Nucleic Acid Probes

Martin Poot1

1 University of Washington Seattle, Seattle, Washington
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 4.3
DOI:  10.1002/0471142956.cy0403s26
Online Posting Date:  November, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit describes the physicochemical structures of commonly used nucleic acid probes, classified into four groups based on their mode of nucleic acid binding. The unit provides an excellent background for the many protocols employing these dyes and should be a prerequisite for any studies involving nuclear probes.

Keywords: nucleic acid probes; intercalating dyes; minor groove‐binding dyes; metachromatic dyes; DNA stains; physicochemical structures

PDF or HTML at Wiley Online Library

Table of Contents

  • Characteristics of Nucleic Acid Stains
  • Minor Groove‐Binding Dyes
  • Dyes that Intercalate Between Bases
  • Dyes with a Dual‐Binding Mode
  • Nucleic Acid–Precipitating and Metachromatic Dyes
  • Concluding Remarks
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Beisker, W., Weller‐Mewe, E.M., and Nusse, M. 1999. Fluorescence enhancement of DNA‐bound TO‐PRO‐3 by incorporation of bromodeoxyuridine to monitor cell cycle kinetics. Cytometry 37:221–229.
   Brachet, J. 1940. La dtection histochimique des acides pentose nucliques. Comptes Rend. Soc. Biol. 133:88–90.
   Crissman, H., Darzynkiewicz, Z., Tobey, R.A., and Steinkamp, J.A. 1985. Correlated measurements of DNA, RNA and protein in individual cells by flow cytometry. Science 228:1321–1324.
   Darzynkiewicz, Z., Traganos, F., Sharpless, T.K., and Melamed, M. 1976. Lymphocyte stimulation. A rapid multiparameter analysis. Proc. Natl. Acad. Sci. U.S.A. 73:2881–2884.
   Darzynkiewicz, Z., Evenson, D., Kapuscincki, J., and Melamed, M. 1983. Denaturation of RNA and DNA in situ induced by acridine orange. Exp. Cell Res. 148:31–46.
   Darzynkiewicz, Z., Traganos, F., Kapuscincki, J., Staiano‐Coico, L., and Melamed, M. 1984. Accessibility of DNA in situ to various fluorochromes: Relationship to chromatin changes during erythroid differentiation of Friend leukemia cells. Cytometry 5:355–363.
   Darzynkiewicz, Z., Kapuscinski, J., Traganos, F., and Crissman, H. 1987. Application of pyronin Y(G) in cytochemistry of nucleic acids. Cytometry 8:138–145.
   Doornbos, R., De Grooth, B.G., Kraan, Y.M., Van Der Poel, C.J., and Greve, J. 1994. Visible diode lasers can be used for flow cytometric immunofluorescence and DNA analysis. Cytometry 15:267–271.
   Harshman, K.D. and Dervan, P.B. 1985. Molecular recognition of B‐DNA by Hoechst 33258. Nucl. Acids Res. 13:4825–4835.
   Haugland, R.P. 1996. Handbook of Fluorescent Probes and Research Chemicals, 6th ed. Molecular Probes, Eugene, Ore.
   Hirons, G.T., Fawcett, J.J., and Crissman, H.A. 1994. TOTO and YOYO: New very bright fluorochromes for DNA content analyses by flow cytometry. Cytometry 15:129–140.
   Kapuscinski, J. and Darzynkiewicz, Z. 1983. Increased accessibility of bases in DNA upon binding of acridine orange. Nucl. Acids Res. 11:7555–7568.
   Kapuscinski, J. and Darzynkiewicz, Z. 1987. Interactions of pyronin Y(G) with nucleic acids. Cytometry 8:129–137.
   Kapuscinski, J. and Skoczylas, B. 1978. Fluorescent complexes of DNA with DAPI 4′,6‐diamidino‐2‐phenylindole·2HCl or DCI 4′,6‐dicarboxyamide‐2‐phenylindole. Nucl. Acids Res. 5:3775–3799.
   Larsson, A., Carlsson, C., Johnsson, M., and Albinsson, B. 1994. Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized light spectroscopy. J. Am. Chem. Soc. 116:8459–8465.
   Latt, S.A. and Stetten, G. 1976. Spectral studies of 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J. Histochem. Cytochem. 24:24–33.
   Lee, L.G., Chen, C.H., and Chu, L.A. 1986. Thiazole orange: A new dye for reticulocyte analysis. Cytometry 7:508–517.
   LePecq, J.B. and Paoletti, C. 1967. A fluorescent complex between ethidium bromide and nucleic acids. Physicochemical characterization. J. Mol. Biol. 27:87–106.
   Loontiens, F.G., Regenfuss, P., Zechel, A., Dumortier, L., and Clegg, R.M. 1990. Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A‐T)], and d(CCGGAATTCCGG): Multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities. Biochemistry 29:9029–9039.
   Loontiens, F.G., McLaughlin, L.W., Diekman, S., and Clegg, R.M. 1991. Binding of Hoechst 33258 and 4′,6‐diamidino‐2‐phenylindole to self‐complementary decadeoxynucleotides with modified exocyclic base substituents. Biochemistry 30:182–189.
   Netzel, T.M., Nafisi, K., Zhao, M., Lenhard, J.R., and Johnson, I. 1995. Base‐content dependence of emission enhancements, quantum yields, and lifetimes for cyanine dyes bound to double‐stranded DNA: Photophysical properties of monomeric and bischromophoric DNA stains. J. Phys. Chem. 195:17936–17947.
   Pjura, P.E., Grzeskowiak, K., and Dickerson, R.E. 1987. Binding of Hoechst 33258 to the minor groove of B‐DNA. J. Mol. Biol. 197:257–271.
   Poot, M., Rizk‐Rabin, M., Hoehn, H., and Pavlovitch, J.H. 1990. Cell size and RNA content correlate with cell differentiation and proliferative capacity of rat keratinocytes. J. Cell Physiol. 143:279–286.
   Rabinovitch, P.S. 1983. Regulation of human fibroblast growth rate by both noncycling cell fraction and transition probability is shown by growth in 5‐bromodeoxyuridine followed by Hoechst 33258 flow cytometry. Proc. Natl. Acad. Sci. U.S.A. 80:2951–2955.
   Rabinovitch, P.S., Kubbies, M., Chen, Y.C., Schindler, D., and Hoehn, H. 1986. BrdU‐Hoechst flow cytometry: A unique tool for quantitative cell cycle analysis. Exp. Cell Res. 174:309–318.
   Rosato, M.T., Jabbour, A.J., Ponce, R.A., Kavanagh, T.J., Takaro, T.K., Hill, J.P., Poot, M., Rabinovitch, P.S., and Faustman, E.M. 2001. Simultaneous analysis of surface marker expression and cell cycle progression in human peripheral blood mononuclear cells. J. Immunol. Methods 256:35–46.
   Rye, H.S. and Glazer, A.N. 1995. Interaction of dimeric intercalating dyes with single‐stranded DNA. Nucl. Acids Res. 23:1215–1222.
   Rye, H.S., Yue, S., Wemmer, D.E., Quesada, M.A., Haugland, R.P., Mathies, R.A., and Glazer, A.N. 1992. Stable fluorescent complexes of double‐stranded DNA with bis‐intercalating asymmetric cyanine dyes: Properties and applications. Nucl. Acids Res. 20:2803–2812.
   Searle, M.S. and Embrey, K.J. 1990. Sequence‐specific interaction of Hoechst 33258 with the minor groove of an adenine‐tract DNA duplex studied in solution by 1H NMR spectroscopy. Nucl. Acids Res. 18:3753–3767.
   Smith, P.J., Blunt, N., Wiltshire, M., Hoy, T., Teesdale‐Spittle, P., Craven, M.R., Watson, J.V., Amos, W.B., Errington, R.J., and Patterson, L.H. 2000. Characteristics of a novel deep red/infrared fluorescent cell‐permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy. Cytometry 40:280–291.
   Spielman, H.P., Wemmer, D.E., and Jacobsen, J.P. 1995. Solution structure of a DNA complex with the fluorescent bis‐intercalator TOTO determined by NMR spectroscopy. Biochemistry 34:8542–8553.
   Stokke, T. and Steen, H.B. 1985. Multiple binding modes for Hoechst 33258 to DNA. J. Histochem. Cytochem. 33:333–338.
   Stokke, T. and Steen, H.B. 1986. Binding of Hoechst 33258 to chromatin in situ. Cytometry 7:227–234.
   Tanious, F.A., Veal, J.M., Buczak, H., Ratmeyer, L.S., and Wilson, W.D. 1992. DAPI (4′,6‐diamidino‐2‐phenylindole) binds differently to DNA and RNA: Minor‐groove binding at AT sites and intercalation at AU sites. Biochemistry 31:3103–3112.
   Toba, K., Winton, E.F., Koike, T., and Shibata, A. 1995. Simultaneous three‐color analysis of the surface phenotype and DNA‐RNA quantitation using 7‐aminoactinomycin D and pyronin Y. J. Immunol. Methods 182:193–207.
   Traganos, F., Crissman, H., and Darzynkiewicz, Z. 1988. Staining with pyronin Y detects changes in conformation of RNA during mitosis and hyperthermia of CHO cells. Exp. Cell Res. 179:535–544.
   Van Hooidonk, C.A.E.M., Glade, C.P., and Van Erp, P.E.J. 1994. TO‐PRO‐3 iodide: A novel HeNe laser‐excitable DNA stain as an alternative for propidium iodide in multiparameter flow cytometry. Cytometry 17:185–189.
   Waring, M.J. 1965. Complex formation between ethidium bromide and nucleic acids. J. Mol. Biol. 13:269–282.
   Waring, M.J. 1981. DNA modification and cancer. Annu. Rev. Biochem. 50:159–192.
PDF or HTML at Wiley Online Library