Cellular Function Probes

Iain D. Johnson1

1 Molecular Probes, Inc., Eugene, Oregon
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 4.4
DOI:  10.1002/0471142956.cy0404s02
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit covers many of the fluorescent probes used in cell biology, such as green fluorescent protein, esterase and peptidase substrates, intracellular thiols, lipid probes, and probes for intracellular ions. It brings to light the chemical relationships between certain probes and relates these properties to their functional application. Correct use of these probes requires an understanding of how they are taken up and distributed within the cell and where appropriate, what factors will affect the fluorescence emission from the probe. This is particularly important for probes of pH and calcium flux.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Probes for Intracellular Ions
  • Membrane Potential Probes
  • Probes for Proteins and Enzymes
  • Probes for Lipids and Membranes
  • Concluding Remarks
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Altenberg, G.A., Vanoye, C.G., Horton, J.K., and Reuss, L. 1994. Unidirectional fluxes of rhodamine 123 in multidrug‐resistant cells: Evidence against direct drug extrusion from the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 91:4654‐4657.
   Amorino, G.P. and Fox, M.H. 1995. Intracellular Na+ measurements using Sodium Green tetraacetate with flow cytometry. Cytometry 21:248‐256.
   Anderson, M.T., Tjioe, I.M., Lorincz, M.C., Parks, D.R., Herzenberg, L.A., Nolan, G.P., and Herzenberg, L.A. 1996. Simultaneous fluorescence‐activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 93:8508‐8511.
   Andrade, W., Seabrook, T.J., Johnston, M.G., and Hay, J.B. 1996. The use of the lipophilic fluorochrome CM‐DiI for tracking the migration of lymphocytes. J. Immunol. Methods 194:181‐189.
   Barhoumi, R., Bowen, J.A., Stein, L.S., Echols, J., and Burghardt, R.C. 1993. Concurrent analysis of intracellular glutathione content and gap junctional intercellular communication. Cytometry 14:747‐756.
   Bass, D., Parce, J.W., Dechatelet, L.R., Szejda, P., Seeds, M.C., and Thomas, M.J. 1983. Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation. J. Immunol. 130:1910‐1917.
   Boyer, M.J. and Hedley, D.W. 1994. Measurement of intracellular pH. Methods Cell Biol. 41:135‐148.
   Breeuwer, P., Drocourt, J.‐L., Rombouts, F.M., and Abee, T. 1994. Energy‐dependent, carrier‐mediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow cytometry. Appl. Environ. Microbiol. 60:1467‐1472.
   Brejc, K., Sixma, T.K., Kitts, P.A., Kain, S.R., Tsien, R.Y., Ormö, M., and Remington, S.J. 1997. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 94:2306‐2311.
   Broxterman, H.J., Sonneveld, P., Feller, N., Ossenkoppele, G.J., Währer, D.C.R., Eekman, C.A., Schoester, M., Lankelma, J., Pinedo, H.M., Löwenberg, B., and Schuurhuis, G.J. 1996. Quality control of multidrug resistance assays in adult acute leukemia: Correlation between assays for P‐glycoprotein expression and activity. Blood 87:4809‐4816.
   Castedo, M., Hirsch, T., Susin, S.A., Zamzami, N., Marchetti, P., Macho, A., and Kroemer, G. 1996. Sequential acquisition of mitochondrial membrane alterations during early lymphocyte apoptosis. J. Immunol. 157:512‐521.
   Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802‐805.
   Chang, L., Gusewitch, G.A., Chritton, D.B.W., Folz, J.C., Lebeck, L.K., and Nehlsen‐Cannarella, S.L. 1993. Rapid flow cytometric assay for the assessment of natural killer cell activity. J. Immunol. Methods 166:45‐54.
   Chen, C.‐S., Martin, O.C., and Pagano, R.E. 1997. Changes in the spectral properties of a plasma membrane lipid analog in the first seconds of endocytosis in living cells. Biophys. J. 72:37‐50.
   Chen, L.B. 1989. Fluorescent labeling of mitochondria. Methods Cell Biol. 29:103‐123.
   Chen, L.B. and Smiley, S.T. 1993. Probing mitochondrial membrane potential in living cells by a J‐aggregate forming dye. In Fluorescent and Luminescent Probes for Biological Activity (W.T. Mason, ed.) pp.124‐132. Academic Press, San Diego.
   Chow, S., Hedley, D., and Tannock, I. 1996. Flow cytometric calibration of intracellular pH measurements in viable cells using mixtures of weak acids and bases. Cytometry 24:360‐367.
   Coates, A. and Tripp, E. 1995. Comparison of two fluorochromes for flow cytometric assay of cellular glutathione content in human malignant melanoma. Melanoma Res. 5:107‐111.
   Cossarizza, A., Baccarani‐Contri, B., Kalashnikova, G., and Franceschi, C. 1993. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J‐aggregate forming lipophilic cation 5,5′,6,6′‐tetrachloro‐1,1′,3,3′‐tetraethylbenzimidazolylcarbocyanine iodide (JC‐1). Biochem. Biophys. Res. Commun. 197:40‐45.
   Davis, S., Weiss, M.J., Wong, J.R., Lampidis, T.J., and Chen, L.B. 1985. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma–derived MCF‐7 cells. J. Biol. Chem. 260:13844‐13850.
   De Clerck, L.S., Bridts, C.H., Mertens, A.M., Moens, M.M., and Stevens, W.J. 1994. Use of fluorescent dyes in the determination of adherence of human leukocytes to endothelial cells and the effect of fluorochromes on cellular function. J. Immunol. Methods 172:115‐124.
   Diaper, J.P. and Edwards, C. 1994. The use of fluorogenic esters to detect viable bacteria by flow cytometry. J. Appl. Bacteriol. 77:221‐228.
   Dordal, M.S., Ho, A.C., Jackson‐Stone, M., Fu, Y.F., Goolsby, C.L., and Winter, J.N. 1995. Flow cytometric assessment of the cellular pharmacokinetics of fluorescent drugs. Cytometry 20:307‐314.
   Ferlini, C., Di Cesare, S., Rainaldi, G., Malorni, W., Samoggia, P., Biselli, R., and Fattorossi, A. 1996. Flow cytometric analysis of the early phases of apoptosis by cellular and nuclear techniques. Cytometry 24:106‐115.
   Floto, R.A., Mahaut‐Smith, M.P., Somasundaram, B., and Allen, J.M. 1996. IgG‐induced Ca2+ oscillations in differentiated U937 cells: A study using laser scanning confocal microscopy and co‐loaded fluo‐3 and Fura Red fluorescent probes. Cell Calcium 18:377‐389.
   Furlong, S.T., Koziel, H., Bartlett, M.S., McLaughlin, G.L., Shaw, M.M., and Jack, R.M. 1997. Lipid transfer from human epithelial cells to Pneumocystis carinii in vitro. J. Infect. Dis. 175:661‐668.
   Galbraith, D.W., Lambert, G.M., Grebenok, R.J., and Sheen, J. 1995. Flow cytometric analysis of transgene expression in higher plants: Green fluorescent protein. Methods Cell Biol. 50:3‐13.
   Gallet, P.F., Maftah, A., Petit, J.M., Denis‐Gay, M., and Julien, R. 1995. Direct cardiolipin assay in yeast using the red fluorescence emission of 10‐N‐nonyl acridine orange. Eur. J. Biochem. 228:113‐119.
   Ganesh, S., Klingel, S., Kahle, H., and Valet, G. 1995. Flow cytometric determination of aminopeptidase activities in viable cells using fluorogenic rhodamine 110 substrates. Cytometry 20:334‐340.
   Gant, V.A., Shakoor, Z., and Hamblin, A.S. 1992. A new method for measuring clustering in suspension between accessory cells and T lymphocytes. J. Immunol. Methods 156:179‐189.
   Gee, K.R., Sun, W.‐C., Klaubert, D.H., Haugland, R.P., Upson, R.H., Steinberg, T.H., and Poot, M. 1996. Novel derivatization of protein thiols with fluorinated fluoresceins. Tetrahedron Lett. 37:7905‐7908.
   Gervaix, A., West, D., Leoni, L.M., Richman, D.D., Wong‐Staal, F., and Corbeil, J. 1997. A new reporter cell line to monitor HIV infection and drug susceptibility. Proc. Natl. Acad. Sci. U.S.A. 94:4653‐4658.
   Gocze, P.M. and Freeman, D.A. 1994. Factors underlying the variability of lipid droplet fluorescence in MA‐10 Leydig tumor cells. Cytometry 17:151‐158.
   Greimers, R., Trebak, M., Moutschen, M., Jacobs, N., and Boniver, J. 1996. Improved four‐color flow cytometry method using fluo‐3 and triple immunofluorescence for analysis of intracellular calcium ion ([Ca2+]i) fluxes among mouse lymph node B‐ and T‐lymphocyte subsets. Cytometry 23:205‐217.
   Grynkiewicz, G., Poenie, M., and Tsien, R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440‐3450.
   Harf, C., Goffinet, S., Meunier, O., Monteil, H., and Colin, D.A. 1997. Flow cytometric determination of endocytosis of viable labeled Legionella pneumophila by Acanthamoeba palestinensis. Cytometry 27:269‐274.
   Haugland, R.P. 1996a. Indicators for Ca2+, Mg2+, Zn2+ and other metals. In Handbook of Fluorescent Probes and Research Chemicals, 6th Ed. (M.T.Z. Spence, ed.) pp. 503‐550. Molecular Probes, Eugene, OR.
   Haugland, R.P. 1996b. Enzymes, enzyme substrates and enzyme inhibitors. In Handbook of Fluorescent Probes and Research Chemicals, 6th Ed. (M.T.Z. Spence, ed.) pp. 201‐250. Molecular Probes, Eugene, OR.
   Hauss, P., Selz, F., and Fischer, A. 1996. Comparative analysis of CD4‐mediated down‐regulation of T cell adhesion to B cells by flow cytometry and fluorescence microscopy. Cytometry 23:39‐47.
   Hedley, D.W. and Chow, S. 1994a. Evaluation of methods for measuring cellular glutathione content using flow cytometry. Cytometry 15:349‐358.
   Hedley, D.W. and Chow, S. 1994b. Glutathione and cellular resistance to anti‐cancer drugs. Methods Cell Biol. 42:31‐44.
   Heim, R., Cubitt, A.B., and Tsien, R.Y. 1995. Improved green fluorescence. Nature 373:663‐664.
   Heim, R., Prasher, D.C., and Tsien, R.Y. 1994. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 91:12501‐12504.
   Henderson, L.M. and Chappell, J.B. 1993. Dihydrorhodamine 123: A fluorescent probe for superoxide generation? Eur. J. Biochem. 217:973‐980.
   Hollò, Z., Homolya, L., Davis, W.C., and Sarkadi, B. 1994. Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim. Biophys. Acta 1191:384‐388.
   Horan, P.K., Melnicoff, M.J., Jensen, B.D., and Slezak, S.E. 1990. Fluorescent cell labeling for in vivo and in vitro cell tracking. Methods Cell Biol. 33:469‐490.
   Hove‐Madsen, L. and Bers, D.M. 1992. Indo‐1 binding to protein in permeabilized ventricular myocytes alters its spectral and calcium binding properties. Biophys. J. 63:89‐97.
   Jaroszeski, M.J., Gilbert, R., and Heller, R. 1994. Detection and quantitation of cell‐cell electrofusion products by flow cytometry. Anal. Biochem. 216:271‐275.
   June, C.H. and Rabinovitch, P.S. 1994. Intracellular ionized calcium. Methods Cell Biol. 41:149‐174.
   Kaneshiro, E.S., Wyder, M.A., Wu, Y.‐P., and Cushion, M.T. 1993. Reliability of calcein acetoxymethyl ester and ethidium homodimer or propidium iodide for viability assessment of microbes. J. Microbiol. Methods 17:1‐16.
   Kaprelyants, A.S. and Kell, D.B. 1992. Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry. J. Appl. Bacteriol. 72:410‐422.
   Kurtz, I. and Balaban, R.S. 1985. Fluorescence emission spectroscopy of 1,4‐dihydroxyphthalonitrile: A method for determining intracellular pH in cultured cells. Biophys. J. 48:499‐508.
   Leytus, S.P., Patterson, W.L., and Mangel, W.F. 1983. New class of sensitive and selective fluorogenic substrates for serine proteases. Biochem. J. 215:253‐260.
   Lipp, P. and Niggli, E. 1993. Ratiometric confocal Ca2+ measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium. 14:359‐372.
   Lorincz, M., Herzenberg, L.A., Diwu, Z., Barranger, J.A., and Kerr, W.G. 1997. Detection and isolation of gene‐corrected cells in Gaucher disease via a fluorescence activated cell sorter assay for lysosomal glucocerebrosidase activity. Blood 89:3412‐3420.
   Lorincz, M., Roederer, M., Diwu, Z., Herzenberg, L.A., and Nolan, G.P. 1996. Enzyme‐generated intracellular fluorescence for single‐cell reporter gene analysis utilizing Escherichia coli β‐glucuronidase. Cytometry 24:321‐329.
   Ludescher, C., Gattringer, C., Drach, J., Hofmann, J., and Grunicke, H. 1991. Rapid functional assay for the detection of multidrug‐resistant cells using the fluorescent dye rhodamine 123. Blood 78:1385‐1390.
   Lybarger, L., Dempsey, D., Franek, K.J., and Chervenak, R. 1996. Rapid generation and flow cytometric analysis of stable GFP‐expressing cells. Cytometry 25:211‐220.
   Lyons, A.B. and Parish, C.R. 1994. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171:131‐137.
   Macho, A., Decaudin, D., Castedo, M., Hirsch, T., Susin, S.A., Zamzami, N., and Kroemer, G. 1996a. Chloromethyl‐X‐rosamine is an aldehyde‐fixable potential‐sensitive fluorochrome for the detection of early apoptosis. Cytometry 25:333‐340.
   Macho, A, Mishal, Z. and Uriel, J. 1996b. Molar quantification by flow cytometry of fatty acid binding to cells using dipyrrometheneboron difluoride derivatives. Cytometry 23:166‐173.
   Mandler, R.N., Schaffner, A.E., Novotny, E.A., Lange, G.D., and Barker, J.L. 1988. Flow cytometric analysis of membrane potential in embryonic rat spinal cord cells. J. Neurosci. Methods 22:203‐213.
   Mason, D.J., Lopéz‐Amorós, Allman, R., Stark, J.M., and Lloyd, D. 1995. The ability of membrane potential dyes and calcofluor white to distinguish between viable and non‐viable bacteria. J. Appl. Bacteriol. 78:309‐315.
   Meisenholder, G.W., Martin, S.J., Green, D.R., Nordberg, J., Babior, B.M., and Gottlieb, R.A. 1996. Events in apoptosis. J. Biol. Chem. 271:16260‐16262.
   Meshulam, T., Herscovitz, H., Casavant, D., Bernardo, J., Roman, R., Haugland, R.P., Strohmeier, G.S., Diamond, R.D., and Simons, E.R. 1992. Flow cytometric kinetic measurements of neutrophil phospholipase A activation. J. Biol. Chem. 267:21465‐21470.
   Minta, A. and Tsien, R.Y. 1989. Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264:19449‐19457.
   Minta, A., Kao, J.P.Y., and Tsien, R.Y. 1989. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264:8171‐8178.
   Nolan, J.P., Magargee, S.F., Posner, R.G., and Hammerstedt, R.H. 1995. Flow cytometric analysis of transmembrane phospholipid movement in bull sperm. Biochemistry 34:3907‐3915.
   Nolan, G.P., Fiering, S., Nicolas, J.‐F., and Herzenberg, L.A. 1988. Fluorescence‐activated cell analysis and sorting of viable mammalian cells based on β‐D‐galactosidase activity after transduction of Escherichia coli lacZ. Proc. Natl. Acad. Sci. U.S.A. 85:2603‐2607.
   Novak, E.J. and Rabinovitch, P.S. 1994. Improved sensitivity in flow cytometric intracellular ionized calcium measurements using fluo‐3/Fura Red fluorescence ratios. Cytometry 17:135‐141.
   Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J. 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392‐1395.
   Owen, C.S. 1992. Comparison of the spectrum‐shifting intracellular pH probes 5′(and 6′)‐carboxy‐10‐dimethylamino‐3‐hydroxyspiro[7H‐benzo[c]xanthene‐7,1′(3′H)‐isobenzofuran]‐3′‐one and 2′,7′‐biscarboxyethyl‐5(and‐6)‐carboxyfluorescein. Anal. Biochem. 204:65‐71.
   Owen, C.S., Carango, P., Grammer, S., Bobyock, S., and Leeper, D.B. 1992. pH‐dependent intracellular quenching of the indicator carboxy SNARF‐1. J. Fluorescence 2:75‐80.
   Owen, C.S., Sykes, N.L., Shuler, R.L., and Ost, D. 1991. Non‐calcium environmental sensitivity of intracellular indo‐1. Anal. Biochem. 192:142‐148.
   Pagano, R.E., Martin, O.C., Kang, H.C., and Haugland, R.P. 1991. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: Accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113:1267‐1279.
   Petit, P.X, Glab, N., Marie, D., Kieffer, H., and Métézeau, P. 1996. Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry. Cytometry 23:28‐38.
   Plàšek, J. and Sigler, K. 1996. Slow fluorescent indicators of membrane potential: A survey of different approaches to probe response analysis. J. Photochem. Photobiol. Biol. 33:101‐124.
   Poot, M., Hudson, F.N., Grossmann, A., Rabinovitch, P.S., and Kavanagh, T.J. 1996a. Probenicid inhibition of fluorescence extrusion after MCB‐staining of Rat‐1 fibroblasts. Cytometry 23:78‐81.
   Poot, M., Zhang, Y.‐Z., Krämer, J.A., Wells, K.S., Jones, L.J., Hanzel, D.K., Lugade, A.G., Singer, V.L., and Haugland, R.P. 1996b. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 44:1363‐1372.
   Poot, M., Kavanagh, T.J., Kang, H.C., Haugland, R.P., and Rabinovitch, P.S. 1991. Flow cytometric analysis of cell cycle–dependent changes in cell thiol level by combining a new laser dye with Hoechst 33342. Cytometry 12:184‐187.
   Rijkers, G.T. and Griffioen, A.W. 1993. Changes in free cytoplasmic magnesium following activation of human lymphocytes. Biochem. J. 289:373‐377.
   Rijkers, G.T., Justement, L.B., Griffioen, A.W., and Cambier, J.C. 1990. Improved method for measuring intracellular Ca2+ with fluo‐3. Cytometry 11:923‐927.
   Robinson, J.P., Narayanan, P.K., and Carter, W.O. 1994a. Functional measurements using HL‐60 cells. Methods Cell Biol. 42:423‐436.
   Robinson, J.P., Carter, W.O., and Narayanan, P.K. 1994b. Oxidative product formation analysis by flow cytometry. Methods Cell Biol. 41:437‐447.
   Robinson, J.P., Bruner, L.H., Bassoe, C.F., Hudson, J.L., Ward, P.A., and Phan, S.H. 1988. Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism. J. Leukocyte Biol. 43:304‐310.
   Roederer, M., Fiering, S., and Herzenberg, L.A. 1991. FACS‐Gal: Flow cytometric analysis and sorting of cells expressing reporter gene constructs. Methods 2:248‐260.
   Ropp, J.D., Donahue, C.J., Wolfgang‐Kimball, D., Hooley, J.J., Chin, J.Y.W., Hoffman, R.A., Cuthbertson, R.A., and Bauer, K.D. 1995. Aequorea green fluorescent protein analysis by flow cytometry. Cytometry 21:309‐317.
   Rothe, G. and Valet, G. 1990. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′,7′‐dichlorofluorescein. J. Leukocyte Biol. 47:440‐448.
   Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2′7′‐dichlorofluorescein and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302:348‐355.
   Ryan, T.C., Weil, G.J., Newburger, P.E., Haugland, R., and Simons, E.R. 1990. Measurement of superoxide release in the phagovacuoles of immune complex–stimulated human neutrophils. J. Immunol. Methods 130:223‐233.
   Scheenen, W.J.J.M., Makings, L.R., Gross, L.R., Pozzan, T., and Tsien, R.Y. 1996. Photodegradation of indo‐1 and its effect on apparent Ca2+ concentrations. Chem. Biol. 3:765‐774.
   Shapiro, H.M. 1994. Cell membrane potential analysis. Methods Cell Biol. 41:121‐133.
   Skowronek, P., Krummeck, G., Haferkamp, O., and Rödel, G. 1990. Flow cytometry as a tool to discriminate respiratory‐competent and respiratory‐deficient yeast cells. Curr. Genet. 18:265‐267.
   Simons, E.R. 1993. Flow cytometry: Use of multiparameter kinetics to evaluate several activation parameters simultaneously in individual living cells. In Fluorescent and Luminescent Probes for Biological Activity (W.T. Mason, ed.) pp. 298‐309. Academic Press, San Diego.
   Sommerfelt, M.A. and Sorscher, E.J. 1994. Use of fluorescence‐activated cell sorting for rapid isolation of insect cells harboring recombinant baculovirus. Methods Cell Biol. 42:563‐574.
   Spangrude, G.J. and Johnson, G.R. 1990. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc. Natl. Acad. Sci. U.S.A. 87:7433‐7437.
   Spencer, C.I. and Berlin, J.R. 1995. A method for recording intracellular [Ca2+] transients in cardiac myocytes using Calcium Green‐2. Pfluegers Arch. Eur. J. Physiol. 430:579‐583.
   Spötl, L., Sarti, A., Dierich, M.P., and Möst, J. 1995. Cell membrane labeling with fluorescent dyes for the demonstration of cytokine‐induced fusion between monocytes and tumor cells. Cytometry 21:160‐169.
   Summerhayes, I.C., Lampidis, T.J., Bernal, S.D., Nadakavukaren, J.J., Nadakavukaren, K.K., Shepherd, E.L., and Chen, L.B. 1982. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 79:5292‐5296.
   Tomasetto, C., Neveu, M.J., Daley, J., Horan, P.K., and Sager, R. 1993. Specificity of gap junction communication among mammary cells and connexin transfectants in culture. J. Cell Biol. 122:157‐167.
   Tse, F.W., Tse, A., and Hille, B. 1994. Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin‐releasing hormone–stimulated Ca2+ oscillations. Proc. Natl. Acad. Sci. U.S.A. 91:9750‐9754.
   Tsien, R.Y. 1980. New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry. 19:2396‐2404.
   Ublacker, G.A., Johnson, J.A., Siegel, F.L., and Mulcahy, R.T. 1991. Influence of glutathione‐S‐transferases on cellular glutathione determination by flow cytometry using monochlorobimane. Cancer Res. 51:1783‐1788.
   Vandenberghe, P.A. and Ceuppens, J.L. 1990. Flow cytometric measurement of cytoplasmic free calcium in human peripheral blood T lymphocytes with fluo‐3, a new fluorescent calcium indicator. J. Immunol. Methods 127:197‐205.
   Van Erp, P.E.J., Jansen, M.J.J.M., De Jongh, G.J., Boezeman, J.B.M., and Schalkwijk, J. 1991. Ratiometric measurement of intracellular pH in cultured human keratinocytes using carboxy SNARF‐1 and flow cytometry. Cytometry 12, 127‐132.
   Vermes, I., Haanen, C., Steffens‐Nakken, H., and Reutelingsperger, C. 1995. A novel assay for apoptosis: Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein‐labeled annexin V. J. Immunol. Methods 184:39‐51.
   Vowells, S.J., Sehhsaria, S., Malech, H.L., Shalit, M., and Fleisher, T.A. 1995. Flow cytometric analysis of the granulocyte respiratory burst: A comparison study of fluorescent probes. J. Immunol. Methods 178:89‐97.
   Wang, Z., Chu, G.L., Hyun, W.C., Pershadsingh, H.A., Fulwyler, M.A., and Dewey, W.C. 1990. Comparison of DMO and flow cytometric methods for measuring intracellular pH and the effect of hyperthermia on the transmembrane pH gradient. Cytometry 11:617‐623.
   Wersto, R.P., Rosenthal, E.R., Crystal, R.G., and Spring, K.R. 1996. Uptake of fluorescent dyes associated with the functional expression of the cystic fibrosis transmembrane conductance regulator in epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 93:1167‐1172.
   Weston, S.A. and Parish, C.R. 1990. New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. J. Immunol. Methods 133:87‐97.
   Whitaker, J.E., Haugland, R.P., and Prendergast, F.G. 1991. Spectral and photophysical studies of Benzo[c]xanthene dyes: Dual emission pH sensors. Anal. Biochem. 194:330‐344.
   Wilson, H.A., Seligmann, B.E., and Chused, T.M. 1985. Voltage‐sensitive cyanine dye fluorescence signals in lymphocytes: Plasma membrane and mitochondrial components. J. Cell. Physiol. 125:61‐71.
Internet Resources
   http://www.probes.com
  The Molecular Probes' World Wide Web site contains the Molecular Probes bibliography database, created by Dr. Richard Haugland, which is the source for many of the papers cited in this unit.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library