Assessment of Telomere Length, Phenotype, and DNA Content

Theodoros Kelesidis1, Ingrid Schmid2

1 Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, 2 Department of Medicine, Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 7.26
DOI:  10.1002/cpcy.12
Online Posting Date:  January, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently‐labeled probes (Flow‐FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen‐antibody complexes are covalently cross‐linked onto cell membranes before FISH with a telomere‐specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow‐FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow‐FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. © 2017 by John Wiley & Sons, Inc.

Keywords: fluorescence in situ hybridization; Flow‐FISH; telomeres; telomere length; cell surface immunofluorescence

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Analysis of Immunophenotype, Telomere Length, and DNA Content
  • Support Protocol 1: DNA Ploidy Determination
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Analysis of Immunophenotype, Telomere Length, and DNA Content

  • PBS‐washed cells
  • Staining solution (see recipe)
  • PBS ( appendix 2A), room temperature and 40°C
  • Cross‐linking solution (see recipe)
  • 1 M Tris·Cl, pH 8.0 ( appendix 2A)
  • Internal control cells, cryopreserved (see recipe)
  • Hybridization buffer (see recipe) with and without fluorescently labeled, telomere‐specific PNA probe, (C 3TA 2) 3 (PerSeptive Biosystems or equivalent)
  • Nucleic‐acid stain compatible with other fluorochromes used (e.g., PI, 7‐AAD, Hoechst 33342), in PBS
  • 12 × 75–mm polystyrene tubes
  • 1.5‐ml polypropylene tubes
  • 80°C shaking water bath
  • 40°C water bath or heating block
  • Flow cytometer with 488‐nm blue excitation, 633‐nm red excitation, and optional UV or violet excitation depending on fluorochrome choices made during strategic planning of the experiments
  • Additional reagents and equipment for staining cells (unit 6.2; Stewart and Stewart, ), counting cells ( appendix 3A; Phelan and Lawler, ), and standardizing flow cytometers (unit 1.3; Hoffman, )

Support Protocol 1: DNA Ploidy Determination

  • Unstained cells
  • Thawed internal control cells
  • PBS ( appendix 2A)
  • PI staining solution
PDF or HTML at Wiley Online Library



Literature Cited

  Ackermann, K., Revell, V.L., Lao, O., Rombouts, E.J., Skene, D.J., and Kayser, M. 2012. Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men. Sleep 35:933‐940. doi: 10.5665/sleep.1954.
  Allsopp, R.C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E.V., Futcher, A.B., Greider, C.W., and Harley, C.B. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 89:10114‐10118. doi: 10.1073/pnas.89.21.10114.
  Andrew, T., Aviv, A., Falchi, M., Surdulescu, G.L., Gardner, J.P., Lu, X., Kimura, M., Kato, B.S., Valdes, A.M., and Spector, T.D. 2006. Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. Am. J. Hum. Genet. 78:480‐486. doi: 10.1086/500052.
  Azuma, M., Phillips, J.H., and Lanier, L.L. 1993. CD28‐ T lymphocytes. Antigenic and functional properties. J. Immunol. 150:1147‐1159.
  Baerlocher, G.M. and Lansdorp, P.M. 2003. Telomere length measurements in leukocyte subsets by automated multicolor flow‐FISH. Cytometry A 55:1‐6. doi: 10.1002/cyto.a.10064.
  Baerlocher, G.M. and Lansdorp, P.M. 2004. Telomere length measurements using fluorescence in situ hybridization and flow cytometry. Methods Cell Biol. 75:719‐750. doi: 10.1016/S0091‐679X(04)75031‐1.
  Baerlocher, G.M., Mak, J., Tien, T., and Lansdorp, P.M. 2002. Telomere length measurement by fluorescence in situ hybridization and flow cytometry: Tips and pitfalls. Cytometry 47:89‐99. doi: 10.1002/cyto.10053.
  Baerlocher, GM., Mak, J., Roth, A., Rice, K.S., and Lansdorp, P.M. 2003. Telomere shortening in leukocyte subpopulations from baboons. J. Leukoc. Biol. 73:289‐296. doi: 10.1189/jlb.0702361.
  Baerlocher, G.M., Vulto, I., de Jong, G., and Lansdorp, P.M. 2006. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat. Protoc. 1:2365‐2376. doi: 10.1038/nprot.2006.263.
  Baird, D.M., Rowson, J., Wynford‐Thomas, D., and Kipling, D. 2003. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat. Genet. 33:203‐207. doi: 10.1038/ng1084.
  Batliwalla, F.M., Rufer, N., Lansdorp, P.M., and Gregersen, P.K. 2000. Oligoclonal expansions in the CD8(+)CD28(‐) T cells largely explain the shorter telomeres detected in this subset: Analysis by flow FISH. Hum. Immunol. 61:951‐958. doi: 10.1016/S0198‐8859(00)00157‐9.
  Batliwalla, F.M., Damle, R.N., Metz, C., Chiorazzi, N., and Gregersen, P.K. 2001. Simultaneous flow cytometric analysis of cell surface markers and telomere length: Analysis of human tonsilar B cells. J. Immunol. Methods 247:103‐109. doi: 10.1016/S0022‐1759(00)00297‐0.
  Beier, F., Balabanov, S., Amberger, C.C., Hartmann, U., Manger, K., Dietz, K., Kotter, I., and Brummendorf, T.H. 2007. Telomere length analysis in monocytes and lymphocytes from patients with systemic lupus erythematosus using multi‐color flow‐FISH. Lupus 16:955‐962. doi: 10.1177/0961203307084299.
  Blasco, M.A., Lee, H.W., Hande, M.P., Samper, E., Lansdorp, P.M., DePinho, R.A., and Greider, C.W. 1997. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25‐34. doi: 10.1016/S0092‐8674(01)80006‐4.
  Borisov, V.I., Korolkova, O.Y., and Kozhevnikov, V.S. 2014. Application of flow‐FISH for dynamic measurement of telomere length in cell division. Curr. Protoc. Cytom. 69:8.14.11‐8.14.10. doi: 10.1002/0471142956.cy0814s69.
  Brummendorf, T.H. and Balabanov, S. 2006. Telomere length dynamics in normal hematopoiesis and in disease states characterized by increased stem cell turnover. Leukemia 20:1706‐1716. doi: 10.1038/sj.leu.2404339.
  Brummendorf, T.H., Holyoake, T.L., Rufer, N., Barnett, M.J., Schulzer, M., Eaves, C.J., Eaves, A.C., and Lansdorp, P.M. 2000. Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood 95:1883‐1890. doi:
  Cawthon, R.M., Smith, K.R., O'Brien, E., Sivatchenko, A., and Kerber, R.A. 2003. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393‐395. doi: 10.1016/S0140‐6736(03)12384‐7.
  Cech, T.R. 2004. Beginning to understand the end of the chromosome. Cell 116:273‐279. doi: 10.1016/S0092‐8674(04)00038‐8.
  Cherkas, L.F., Aviv, A., Valdes, A.M., Hunkin, J.L., Gardner, J.P., Surdulescu, G.L., Kimura, M., and Spector, T.D. 2006. The effects of social status on biological aging as measured by white‐blood‐cell telomere length. Aging Cell 5:361‐365. doi: 10.1111/j.1474‐9726.2006.00222.x.
  Darzynkiewicz, Z. and Juan, G. 1997. DNA content measurement for DNA ploidy and cell cycle analysis. Curr. Protoc. Cytom. 00:7.5.1‐7.5.24.
  de Lange, T., Shiue, L., Myers, R.M., Cox, D.R., Naylor, S.L., Killery, A.M., and Varmus, H.E. 1990. Structure and variability of human chromosome ends. Mol. Cell Biol. 10:518‐527. doi: 10.1128/MCB.10.2.518.
  Drummond, M., Lennard, A., Brummendorf, T., and Holyoake, T. 2004. Telomere shortening correlates with prognostic score at diagnosis and proceeds rapidly during progression of chronic myeloid leukemia. Leuk. Lymphoma 45:1775‐1781. doi: 10.1080/10428190410001693542.
  Effros, R.B., Allsopp, R., Chiu, C.P., Hausner, M.A., Hirji, K., Wang, L., Harley, C.B., Villeponteau, B., West, M.D., and Giorgi, J.V. 1996. Shortened telomeres in the expanded CD28‐CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 10:F17‐22. doi: 10.1097/00002030‐199607000‐00001.
  Effros, R.B., Dagarag, M., and Valenzuela, H.F. 2003. In vitro senescence of immune cells. Exp. Gerontol. 38:1243‐1249. doi: 10.1016/j.exger.2003.09.004.
  Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M., Driver, D.A., Berg, R.H., Kim, S.K., Norden, B., and Nielsen, P.E. 1993. PNA hybridizes to complementary oligonucleotides obeying the Watson‐Crick hydrogen‐bonding rules. Nature 365:566‐568. doi: 10.1038/365566a0.
  Fried, J., Perez, A.G., and Clarkson, B. 1980. Quantitative analysis of cell cycle progression of synchronous cells by flow cytometry. Exp. Cell Res. 126:63‐74. doi: 10.1016/0014‐4827(80)90471‐1.
  Harley, C.B., Futcher, A.B., and Greider, C.W. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458‐460. doi: 10.1038/345458a0.
  Harley, C.B., Vaziri, H., Counter, C.M., and Allsopp, R.C. 1992. The telomere hypothesis of cellular aging. Exp. Gerontol. 27:375‐382. doi: 10.1016/0531‐5565(92)90068‐B.
  Hastie, N.D., Dempster, M., Dunlop, M.G., Thompson, A.M., Green, D.K., and Allshire, R.C. 1990. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866‐868. doi: 10.1038/346866a0.
  Hoffman, R.A. 2005. Standardization, calibration, and control in flow cytometry. Curr. Protoc. Cytom. 32:1.3.1‐1.3.21.
  Hori, S., Heike, Y., Takei, M., Maruyama, M., Inoue, Y., Lee, J.J., Kim, H.J., Harada, Y., Kawai, H., Shimosaka, A., Kami, M., Tanosaki, M.D., Wakasugi, H., Saito, S., Takaue, Y., and Kakizoe, T. 2004. Freeze‐thawing procedures have no influence on the phenotypic and functional development of dendritic cells generated from peripheral blood CD14+ monocytes. J. Immunother. 27:27‐35. doi: 10.1097/00002371‐200401000‐00003.
  Hultdin, M., Gronlund, E., Norrback, K., Eriksson‐Lindstrom, E., Just, T., and Roos, G. 1998. Telomere analysis by fluorescence in situ hybridization and flow cytometry. Nucleic Acids Res. 26:3651‐3656. doi: 10.1093/nar/26.16.3651.
  Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M., and Seifalian, A.M. 2007. Biological applications of quantum dots. Biomaterials 28:4717‐4732. doi: 10.1016/j.biomaterials.2007.07.014.
  Kapoor, V. and Telford, W.G. 2004. Telomere length measurement by fluorescence in situ hybridization and flow cytometry. Methods Mol. Biol. 263:385‐398. doi: 10.1385/1‐59259‐773‐4:385.
  Kapoor, V., Hakim, F.T., Rehman, N., Gress, R.E., and Telford, W.G. 2009. Quantum dots thermal stability improves simultaneous phenotype‐specific telomere length measurement by FISH‐flow cytometry. J. Immunol. Methods 344:6‐14. doi: 10.1016/j.jim.2009.02.004.
  Klapper, W., Moosig, F., Sotnikova, A., Qian, W., Schroder, J.O., and Parwaresch, R. 2004. Telomerase activity in B and T lymphocytes of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 63:1681‐1683. doi: 10.1136/ard.2003.016022.
  Kurosaka, D., Yasuda, J., Yoshida, K., Yoneda, A., Yasuda, C., Kingetsu, I., Toyokawa, Y., Yokoyama, T., Saito, S., and Yamada, A. 2006. Abnormal telomerase activity and telomere length in T and B cells from patients with systemic lupus erythematosus. J. Rheumatol. 33:1102‐1107.
  Lansdorp, P.M. 2006. Stress, social rank and leukocyte telomere length. Aging Cell 5:583‐584. doi: 10.1111/j.1474‐9726.2006.00247.x.
  Lansdorp, P.M., Verwoerd, N.P., van de Rijke, F.M., Dragowska, V., Little, M.T., Dirks, R.W., Raap, A.K., and Tanke, H.J. 1996. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5:685‐691. doi: 10.1093/hmg/5.5.685.
  Lauzon, W., Sanchez Dardon, J., Cameron, D.W., and Badley, A.D. 2000. Flow cytometric measurement of telomere length. Cytometry 42:159‐164. doi: 10.1002/1097‐0320(20000615)42:3%3c159::AID‐CYTO1%3e3.0.CO;2‐9.
  Law, H.L.Y.L. 2001. DNA index and Q Flow FISH measurement of telomere length. Cytometry 45:80. doi: 10.1002/1097‐0320(20010901)45:1%3c80::AID‐CYTO1148%3e3.0.CO;2‐C.
  Law, H. and Lau, Y. 2001. Validation and development of quantitative flow cytometry‐based fluorescence in situ hybridization for intercenter comparison of telomere length measurement. Cytometry 43:150‐153. doi: 10.1002/1097‐0320(20010201)43:2%3c150::AID‐CYTO1030%3e3.0.CO;2‐H.
  Martens, U.M., Zijlmans, J.M., Poon, S.S., Dragowska, W., Yui, J., Chavez, E.A., Ward, R.K., and Lansdorp, P.M. 1998. Short telomeres on human chromosome 17p. Nat. Genet. 18:76‐80. doi: 10.1038/ng0198‐018.
  Martens, U.M., Brass, V., Sedlacek, L., Pantic, M., Exner, C., Guo, Y., Engelhardt, M., Lansdorp, P.M., Waller, C.F., and Lange, W. 2002. Telomere maintenance in human B lymphocytes. Br. J. Haematol. 119:810‐818. doi: 10.1046/j.1365‐2141.2002.03910.x.
  Monteiro, J., Batliwalla, F., Ostrer, H., and Gregersen, P.K. 1996. Shortened telomeres in clonally expanded CD28‐CD8+ T cells imply a replicative history that is distinct from their CD28+CD8+ counterparts. J. Immunol. 156:3587‐3590.
  Mosiman, V.L., Patterson, B.K., Canterero, L., and Goolsby, C.L. 1997. Reducing cellular autofluorescence in flow cytometry: An in situ method. Cytometry 30:151‐156. doi: 10.1002/(SICI)1097‐0320(19970615)30:3%3c151::AID‐CYTO6%3e3.0.CO;2‐O.
  Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D., Meyne, J., Ratliff, R.L., and Wu, J.R. 1988. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. U.S.A. 85:6622‐6626. doi: 10.1073/pnas.85.18.6622.
  Ouyang, Q., Baerlocher, G., Vulto, I., and Lansdorp, P.M. 2007. Telomere length in human natural killer cell subsets. Ann. N.Y. Acad. Sci. 1106:240‐252. doi: 10.1196/annals.1392.001.
  Phelan, M.C. and Lawler, G. 1997. Cell counting. Curr. Protoc. Cytom. 00:A.3A.1‐A.3A.4.
  Phelan, M.C. 2006. Techniques for mammalian cell tissue culture. Curr. Protoc. Cytom. 36:A.3B.1‐A.3B.18.
  Pinto, L.A., Trivett, M.T., Wallace, D., Higgins, J., Baseler, M., Terabe, M., Belyakov, I.M., Berzofsky, J.A., and Hildesheim, A. 2005. Fixation and cryopreservation of whole blood and isolated mononuclear cells: Influence of different procedures on lymphocyte subset analysis by flow cytometry. Cytometry B Clin. Cytom. 63:47‐55. doi: 10.1002/cyto.b.20038.
  Plunkett, F.J., Soares, M.V., Annels, N., Hislop, A., Ivory, K., Lowdell, M., Salmon, M., Rickinson, A., and Akbar, A.N. 2001. The flow cytometric analysis of telomere length in antigen‐specific CD8+ T cells during acute Epstein‐Barr virus infection. Blood 97:700‐707. doi: 10.1182/blood.V97.3.700.
  Potter, A.J. and Wener, M.H. 2005. Flow cytometric analysis of fluorescence in situ hybridization with dye dilution and DNA staining (flow‐FISH‐DDD) to determine telomere length dynamics in proliferating cells. Cytometry A 68:53‐58. doi: 10.1002/cyto.a.20181.
  Roos, G. and Hultdin, M. 2001. Flow cytometric determination of telomere length. Cytometry 45:79‐80. doi: 10.1002/1097‐0320(20010901)45:1%3c79::AID‐CYTO1147%3e3.0.CO;2‐Q.
  Rufer, N., Reichenbach, P., and Romero, P. 2005. Methods for the ex vivo characterization of human CD8+ T subsets based on gene expression and replicative history analysis. Methods Mol. Med. 109:265‐284. doi: 10.1385/1‐59259‐862‐5:265.
  Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E., and Lansdorp, P.M. 1998. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 16:743‐747. doi: 10.1038/nbt0898‐743.
  Rufer, N., Brummendorf, T.H., Kolvraa, S., Bischoff, C., Christensen, K., Wadsworth, L., Schulzer, M., and Lansdorp, P.M. 1999. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 190:157‐167. doi: 10.1084/jem.190.2.157.
  Schmid, I., Schmid, P., and Giorgi, J.V. 1988. Conversion of logarithmic channel numbers into relative linear fluorescence intensity. Cytometry 9:533‐538. doi: 10.1002/cyto.990090605.
  Schmid, I., Dagarag, M.D., Hausner, M.A., Matud, J.L., Just, T., Effros, R.B., and Jamieson, B.D. 2002. Simultaneous flow cytometric analysis of two cell surface markers, telomere length, and DNA content. Cytometry 49:96‐105. doi: 10.1002/cyto.10163.
  Slagboom, P.E., Droog, S., and Boomsma, D.I. 1994. Genetic determination of telomere size in humans: A twin study of three age groups. Am. J. Hum. Genet. 55:876‐882.
  Son, N.H., Murray, S., Yanovski, J., Hodes, R.J., and Weng, N. 2000. Lineage‐specific telomere shortening and unaltered capacity for telomerase expression in human T and B lymphocytes with age. J. Immunol. 165:1191‐1196. doi: 10.4049/jimmunol.165.3.1191.
  Stewart, C. and Stewart, S. 1997a. Immunophenotyping. Curr. Protoc. Cytom. 00:6.2:6.2.1‐6.2.18.
  Stewart, C.C. and Stewart, S.J. 1997b. Titering antibodies. Curr. Protoc. Cytom. 00:4.1.1‐4.1.13.
  Stewart, S.A. and Weinberg, R.A. 2006. Telomeres: Cancer to human aging. Annu. Rev. Cell Dev. Biol. 22:531‐557. doi: 10.1146/annurev.cellbio.22.010305.104518.
  Valdes, A.M., Andrew, T., Gardner, J.P., Kimura, M., Oelsner, E., Cherkas, L.F., Aviv, A., and Spector, T.D. 2005. Obesity, cigarette smoking, and telomere length in women. Lancet 366:662‐664. doi: 10.1016/S0140‐6736(05)66630‐5.
  Valenzuela, H.F. and Effros, R.B. 2000. Telomere measurement and replicative senescence. In Aging: Methods and Protocols (Y.A. Barnett and C.R. Barnett, eds.) pp. 23‐52. Humana Press, Totowa, N.J.
  Van Ziffle, J.A., Baerlocher, G.M., and Lansdorp, P.M. 2003. Telomere length in subpopulations of human hematopoietic cells. Stem. Cells 21:654‐660. doi: 10.1634/stemcells.21‐6‐654.
  Vulliamy, T., Marrone, A., Goldman, F., Dearlove, A., Bessler, M., Mason, P.J., and Dokal, I. 2001. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413:432‐435. doi: 10.1038/35096585.
  Wang, S.Y., Hsu, M.L., Tzeng, C.H., Hsu, H.C., and Ho, C.K. 1998. The influence of cryopreservation on cytokine production by human T lymphocytes. Cryobiology 37:22‐29. doi: 10.1006/cryo.1998.2094.
  Weng, N.P., Granger, L., and Hodes, R.J. 1997. Telomere lengthening and telomerase activation during human B cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 94:10827‐10832. doi: 10.1073/pnas.94.20.10827.
  Wieser, M., Stadler, G., Bohm, E., Borth, N., Katinger, H., Grillari, J., and Voglauer, R. 2006. Nuclear flow FISH: Isolation of cell nuclei improves the determination of telomere lengths. Exp. Gerontol. 41:230‐235. doi: 10.1016/j.exger.2005.09.013.
  Wiley, L., Ashok, D., Martin‐Ruiz, C., Talbot, D.C., Collerton, J., Kingston, A., Davies, K., Chinnery, P.F., Catt, M., Jagger, C., Kirkwood, T.B., and von Zglinicki, T. 2014. Reactive oxygen species production and mitochondrial dysfunction in white blood cells are not valid biomarkers of ageing in the very old. PLoS One 9:e91005. doi: 10.1371/journal.pone.0091005.
  Wu, C.H., Hsieh, S.C., Li, K.J., Lu, M.C., and Yu, C.L. 2007. Premature telomere shortening in polymorphonuclear neutrophils from patients with systemic lupus erythematosus is related to the lupus disease activity. Lupus 16:265‐272. doi: 10.1177/0961203307077155.
Key Reference
  Schmid et al., 2002. See above.
  Describes the application of the procedure presented in the Basic Protocol to the simultaneous measurement of two cell surface markers and telomere length.
PDF or HTML at Wiley Online Library