Signal Transduction During Natural Killer Cell Activation

Claudia C.S. Chini1, Paul J. Leibson1

1 Mayo Clinic and Foundation, Rochester, Minnesota
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 9.16
DOI:  10.1002/0471142956.cy0916s14
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Understanding of transmembrane signaling during NK‐cell activation has greatly expanded during the past few years. The discovery and characterization of novel triggering and inhibitory receptors have revealed the complexity of these processes. This unit focuses on receptor‐initiated signaling pathways that modulate NK functions. Establishing the roles of different signaling pathways in NK cells is a crucial step in the design of therapeutic approaches for selective enhancement or suppression of NK‐cell activation.

PDF or HTML at Wiley Online Library

Table of Contents

  • Activation Signals
  • Inhibition of NK Cell Activation
  • Summary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Anderson, P., Caligiuri, M., Ritz, J., and Schlossman, S.F. 1989. CD3‐negative natural killer cells express ζ TCR as part of a novel molecular complex. Nature 341:159‐162.
   Aramburu, J., Azzoni, L., Rao, A., and Perussia, B. 1995. Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: Regulation upon CD16 ligand binding. J. Exp. Med. 182:801‐810.
   Arase, H., Arase, N., and Saito, T. 1996. Interferon γ production by natural killer (NK) cells and NK1.1 T+ cells upon NKR‐P1 cross‐linking. J. Exp. Med. 183:2391‐2396.
   Arase, N., Arase, H., Park, S.Y., Ohno, H., Ra, C., and Saito, T. 1997. Association with FcRγ is essential for activation signal through NKR‐P1 (CD161) in natural killer (NK) cells and NK1.1+ T cells. J. Exp. Med. 186:1957‐1963.
   Atkinson, E.A., Gerrard, J.M., Hildes, G.E., and Greenberg, A.H. 1990. Studies of the mechanism of natural killer (NK) degranulation and cytotoxicity. J. Leukoc. Biol. 47:39‐48.
   Azzoni, L., Kamoun, M., Salcedo, T.W., Kanakaraj, P., and Perussia, B. 1992. Stimulation of Fc gamma RIIIA results in phospholipase C‐gamma 1 tyrosine phosphorylation and p56lck activation. J. Exp. Med. 176:1745‐1750.
   Bacon, C.M., McVicar, D.W., Ortaldo, J.R., Rees, R.C., O'Shea, J.J., and Johnston, J.A. 1995a. Interleukin 12 (IL‐12) induces tyrosine phosphorylation of JAK2 and TYK2: Differential use of Janus family tyrosine kinases by IL‐2 and IL‐12. J. Exp. Med. 181:399‐404.
   Bacon, C.M., Petricoin, E.F. III, Ortaldo, J.R., Rees, R.C., Larner, A.C., Johnston, J.A, and O'Shea, J.J. 1995b. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 92:7307‐7311.
   Bensussan, A. 1998. The human natural killer lymphocyte receptors for MHC class I molecules. Eur. Cytok. Netw. 9:577‐583.
   Biassoni, R., Cantoni, C., Falco, M., Verdiani, S., Bottino, C., Vitale, M., Conte, R., Poggi, A., Moretta, A., and Moretta, L. 1996. The human leukocyte antigen (HLA)‐C‐specific “activatory” or “inhibitory” natural killer receptors display highly homologous extracellular domains, but differ in their transmembrane and intracytoplasmic portions. J. Exp. Med. 183:645‐650.
   Billadeau, D.D., Brumbaugh, K.M., Dick, C.J., Schoon, R.A., Bustelo, X.R., and Leibson, P.J. 1998. The Vav‐Rac1 pathway in cytotoxic lymphocytes regulates the generation of cell‐mediated killing. J. Exp. Med. 188:549‐559.
   Binstadt, B.A., Brumbaugh, K.M., Dick, C.J., Scharenberg, A.M., Williams, B.L., Colonna, M., Lanier, L.L., Kinet, J.‐P., Abraham, R.T., and Leibson, P.J. 1996. Sequential involvement of Lck and SHP‐1 with MHC‐recognizing receptors on NK cells inhibits FcR‐initiated tyrosine kinase activation. Immunity 5:629‐638.
   Binstadt, B.A., Brumbaugh, K.M., and Leibson, P.J. 1997. Signal transduction by human NK cell MHC‐recognizing receptors. Immunol. Rev. 155:197‐203.
   Binstadt, B.A., Billadeau, D.D., Jevremovic, D., Williams, B.L., Fang, N., Yi, T., Koretzky, G.A., Abraham, R.T., and Leibson, P.J. 1998. SLP‐76 is a direct substrate of SHP‐1 recruited to killer cell inhibitory receptors. J. Biol. Chem. 273:27518‐27523.
   Bonnema, J.D., Karnitz, L.M., Schoon, R.A., Abraham, R.T., and Leibson, P.J. 1994a. Fc receptor stimulation of phosphatidylinositol 3‐kinase in natural killer cells is associated with protein kinase C‐independent granule release and cell‐mediated cytotoxicity. J. Exp. Med. 180:1427‐1435.
   Bonnema, J.D., Rivlin, K.A., Ting, A.T., Schoon, R.A., Abraham, R.T., and Leibson, P.J. 1994b. Cytokine‐enhanced NK cell‐mediated cytotoxicity. Positive modulatory effects of IL‐2 and IL‐12 on stimulus‐dependent granule exocytosis. J. Immunol. 152:2098‐2104.
   Bottino, C., Sivori, S., Vitale, M., Cantoni, C., Falco, M., Pende, D., Morelli, L., Augugliaro, R., Semenzato, G., Biassoni, R., Moretta, L., and Moretta, L. 1996. A novel surface molecule homologous to the p58/p50 family of receptors is selectively expressed on a subset of human natural killer cells and induces both triggering of cell functions and proliferation. Eur. J. Immunol. 26:1816‐1824.
   Brumbaugh, K.M., Perez‐Villar, J.J., Dick, C.J., Schoon, R.A., Lopez‐Botet, M., and Leibson, P.J. 1996. Clonotypic differences in signaling from CD94 (kp43) on NK cells lead to divergent cellular responses. J. Immunol. 157:2804‐2812.
   Brumbaugh, K.M., Binstadt, B.A., Billadeau, D.D., Schoon, R.A., Dick, C.J., Ten, R.M., and Leibson, P.J. 1997. Functional role for syk tyrosine kinase in natural killer cell‐mediated natural cytotoxicity. J. Exp. Med. 186:1‐9.
   Brumbaugh, K.M., Binstadt, B.A., and Leibson, P. 1998. Signal transduction during NK cell activation: Balancing opposing forces. Curr. Top. Microbiol. Immunol. 230:103‐122.
   Burshtyn, D.N. and Long, E. 1997. Regulation through inhibitory receptors: Lessons from natural killer cells. Trends Cell Biol. 7:473‐479.
   Burshtyn, D.N., Scharenberg, A.M., Wagtmann, N., Rajagopalan, S., Berrada, K., Yi, T., Kinet, J.‐P., and Long, E.O. 1996. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity 4:77‐85.
   Cambier, J.C. 1995. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine‐based activation motif (ITAM). J. Immunol. 155:3281‐3285.
   Campbell, K.S. and Giorda, R. 1997. The cytoplasmic domain of rat NKR‐P1 receptor interacts with the N‐terminal domain of p56lck via cysteine residues. Eur. J. Immunol. 27:72‐77.
   Campbell, K.S., Dessing, M., Lopez‐Botet, M., Cella, M., and Colonna, M. 1996. Tyrosine phosphorylation of a human killer inhibitory receptor recruits protein tyrosine phosphatase 1C. J. Exp. Med. 184:93‐100.
   Carson, W.E., Giri, J.G., Lindemann, M.J., Linett, M.L., Ahdieh, M., Paxton, R., Anderson, D., Eisenmann, J., Grabstein, K., and Caligiuri, M.A. 1994. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL‐2 receptor. J. Exp. Med. 180:1395‐1403.
   Cassarella, M.A., Anegon, L., Guturi, M.C., Griskey, P., Trinchieri, G., and Perussia, B. 1989. FcγR (CD16) interaction with ligand induces Ca+2 mobilization and phosphoinositide turnover in human natural killer cells. Role of Ca+2 in FcγR (CD16)‐induced transcription and expression of lymphokine genes. J. Exp. Med. 169:549‐567.
   Cerny, J., Fiserova, A., Horvath, O., Bezouska, K., Pospisil, M., and Hoejsi, V. 1997. Association of human NK cell surface receptors NKR‐P1 and CD94 with Src‐family protein kinases. Immunogenetics 46:231‐236.
   Chan, A.C., Kadlecek, T.A., Elder, M.E., Filipovich, A.H., Kuo, W.‐L., Iwashima, M., Parslow, T.G., and Weiss, A. 1994. ZAP‐70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264:1599‐1601.
   Chow, S.C., Ng, J., Nordstedt, C., Fredholm, B.B., and Jondal, M. 1988. Phosphoinositide breakdown and evidence for protein kinase C involvement during human NK killing. Cell. Immunol. 114:96‐103.
   Chu, D.H., Morita, C.T., and Weiss, A. 1998. The Syk family of protein tyrosine kinases in T‐cell activation and development. Immunol. Rev. 165:167‐180.
   Cifone, M.G., Roncaioli, P., Cironi, L., Festuccia, C., Meccia, A., D'Alo, S., Botti, D., and Santoni, A. 1997. NKR‐P1A stimulation of arachidonate‐generating enzymes in rat NK cells is associated with granule release and cytotoxic activity. J. Immunol. 159:309‐317.
   Cone, J.C., Lu, Y., Trevillyan, J.M., Bjorndahl, J.M., and Phillips, C.A. 1993. Association of the p56lck protein tyrosine kinase with the FcγRIIIA/CD16 complex in human natural killer cells. Eur. J. Immunol. 23:2488‐2497.
   Crabtree, G.R. 1999. Generic signals and specific outcomes: signaling through Ca+2, calcineurin, and NF‐AT. Cell 96:611‐614.
   Crespo, P., Schuebel, K.E., Ostrom, A.A., Gutkind, J.S., and Bustelo, X.R. 1997. Phosphotyrosine‐dependent activation of Rac‐1 GDP/GTP exchange by the Vav proto‐oncogene product. Nature 375:169‐172.
   Einspahr, K.J., Abraham, R.T., Binstadt, B.A., Uehara, Y., and Leibson, P.J. 1991. Tyrosine phosphorylation provides an early and requisite signal for the activation of natural killer cell cytotoxic function. Proc. Natl. Acad. Sci. U.S.A. 88:6279‐6283.
   Eiseman, E. and Bolen, J.B. 1990. Src‐related tyrosine protein kinases as signaling components in hematopoietic cells. Cancer Cells 2:303‐310.
   Elder, M.E., Lin, D., Clever, J., Chan, A.C., Hope, T.J., Weiss, A., and Parslow, T.G. 1994. Human severe combined immunodeficiency due to a defect in ZAP‐70, a T cell tyrosine kinase. Science 264:1596‐1598.
   Fry, A.M., Lanier, L.L., and Weiss, A. 1996. Phosphotyrosines in the killer cell inhibitory receptor motif of NKB1 are required for negative signaling and for association with protein tyrosine phosphatase 1C. J. Exp. Med. 184:295‐300.
   Garni‐Wagner, B.A., Purohit, A., Mathew, P.A., Bennett, M., and Kumar, V. 1993. A novel function‐associated molecule related to non‐MHC‐restricted cytotoxicity mediated by activated natural killer cells and T cells. J. Immunol. 151:60‐70.
   Giorda, R., Rudert, W.A., Vavassori, C., Chambers, W.H., Hiserodt, J.C., and Trucco, M. 1990. NKR‐P1, a signal transduction molecule on natural killer cells. Science 249:1298‐1300.
   Gismondi, A., Milella, M., Palmieri, G., Piccoli, M., Frati, L., and Santoni, A. 1995. Stimulation of protein tyrosine phosphorylation by interaction of NK cells with fibronectin via alpha 4 beta 1 and alpha 5 beta 1. J. Immunol. 154:3128‐3137.
   Helander, T.S. and Timonen, T. 1998. Adhesion in NK cell function. Curr. Top. Microbiol. Immunol. 230:89‐99.
   Helander, T.S., Carpen, O., Turunen, O., Kovanen, P.E., Vaheri, A., and Timonen, T. 1996. ICAM‐2 redistributed by ezrin as targets for natural killer cells. Nature 382:265‐268.
   Houchins, J.P., Lanier, L.L., Niemie, E.C., Phillips, J.H., and Ryan, J.C. 1997. Natural killer cell cytolytic activity is inhibited by NKG2‐A and activated by NKG2‐C. J. Immunol. 158:3603‐3609.
   Ihle, J.N., Thierfelder, W., Teglund, S., Stravapodis, D., Wang, D., Feng, J., and Parganas, E. 1998. Signaling by the cytokine receptor superfamily. Ann. N.Y. Acad. Sci. 865:1‐9.
   Jackman, J.K., Motto, D.G., Sun, Q., Tanemoto, M., Turck, C., Peltz, G., Koretzky, G., and Findell, P. 1995. Molecular cloning of SLP‐76, a 76‐kDa tyrosine phosphoprotein associated with Grb2 in T cells. J. Biol. Chem. 270:7029‐7032.
   Jevremovic, D., Billadeau, D.D., Schoon, R.A., Dick, C.J., Irvin, B.J., Zhang, W., Samelson, L.E., Abraham, R.T., and Leibson, P.J. 1999. A role for the adaptor protein LAT in human NK cell‐mediated cytotoxicity. J. Immunol. 162:2453‐2456.
   Kanakaraj, P., Duckworth, B., Azzoni, L., Kamoun, M., Cantley, L.C., and Perussia, B. 1994. Phosphatidylinositol‐3 kinase activation induced upon FcγIIIA‐ligand interaction. J. Exp. Med. 179:551‐558.
   Kaufman, D.S., Schoon, R.A., Robertson, M.J., and Leibson, P.J. 1995. Inhibition of selective signaling events in natural killer cells recognizing major histocompatibility complex class I. Proc. Natl. Acad. Sci. U.S.A. 92:6484‐6488.
   Kolanus, W., Romeo, C., and Seed, B. 1993. T cell activation by clustered tyrosine kinases. Cell. 74:171‐183.
   Kurosaki, T., Gander, I., and Ravetch, J.V. 1991. A subunit common to an IgG Fc receptor and the T‐cell receptor mediates assembly through different interactions. Proc. Natl. Acad. Sci. U.S.A. 88:3837‐3841.
   Lanier, L.L. 1997. Natural killer cells: from no receptors to too many. Immunity 6:371‐378.
   Lanier, L.L. 1998. NK cell receptors. Annu. Rev. Immunol. 16:359‐393.
   Lanier, L.L., Yu, G., and Phillips, J.H. 1989. Co‐association of CD3ζ with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 342:803‐805.
   Lanier, L.L., Chang, C., and Phillips, J.H. 1994. Human NKR‐P1A. A disulfide‐linked homodimer of the C‐type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol. 153:2417‐2428.
   Lanier, L.L., Corliss, B.C., Wu, J., Leong, C., and Phillips, J.H. 1998a. Immunoreceptor DAP12 bearing a tyrosine‐based activation motif is involved in activating NK cells. Nature 391:703‐707.
   Lanier, L.L., Corliss, B., Wu, J., and Phillips, J.H. 1998b. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8:693‐701.
   Latchman, Y., McKay, P.F., and Reiser, H. 1998. Identification of the 2B4 molecule as a counter receptor for CD48. J. Immunol. 161:5809‐5812.
   Lazetic, S., Chang, C., Houchins, J.P., Lanier, L.L., and Phillips, J.H. 1996. Human natural killer receptors involved in MHC class I recognition are disulfide‐linked heterodimers of CD94 and NKG2 subunits. J. Immunol. 157:4741‐4745.
   Leibson, P.J. 1995. MHC‐recognizing receptors: They're not for T cells anymore. Immunity 3:5‐8.
   Leibson, P.J. 1997. Signal transduction during natural killer cell activation: Inside the mind of a killer. Immunity 6:655‐661.
   Long, E.O. and Wagtmann, N. 1997. Natural killer cell receptors. Curr. Opin. Immunol. 9:344‐350.
   Lopez‐Botet, M., Carretero, M., Bellon, T., Perezvillar, J.J., Llano, M., and Navarro, F. 1998. The CD94/NKG2 C‐type lectin receptor complex. Curr. Top. Microbiol. Immunol. 230:41‐52.
   Maghazachi, A.A., Al‐Aoukaty, A., Naper, C., Torgersen, K.L., and Rolstad, B. 1996. Preferential involvement of Go and Gz proteins in mediating rat natural killer cell lysis of allogenic and tumor target cells. J. Immunol. 157:5308‐5314.
   Mainiero, F., Gismondi, A., Soriani, A., Cippitelli, M., Palmieri, G., Jacobelli, J., Piccoli, M., Frati, L., and Santoni, A. 1998. Integrin‐mediated ras‐extracellular regulated kinase (ERK) signaling regulates interferon gamma production in human natural killer cells. J. Exp. Med. 188:1267‐1275.
   Mason, L.H., Anderson, S.K., Yokoyama, W.M., Smith, H.R.C., Winkler‐Pickett, R., and Ortaldo, J.R. 1996. The Ly‐49D receptor activates murine natural killer cells. J. Exp. Med. 184:2119‐2128.
   McVicar, D.W., Taylor, L.S., Gosselin, P., Willette‐Brown, J., Mikhael, A.I., Gehlen, R.L., Nakamura, M.C., Linnemeyer, P., Seaman, W.E., Anderson, S.K., Ortaldo, J.R., and Mason, L.H. 1998. DAP12‐mediated signal transduction in natural killer cells. A dominant role for Syk protein tyrosine kinase. J. Biol. Chem. 273:32934‐32942.
   Melero, I., Balboa, M.A., Alonso, J.L., Yague, E., Pivel, J.P., Sanchez‐Madrid, F., and Lopez‐Botet, M. 1993. Signaling through the LFA‐1 leukocyte integrin actively regulates intracellular adhesion and tumor necrosis factor‐α production in natural killer cells. Eur. J. Immunol. 23:1859‐1865.
   Milella, M., Gismondi, A., Roncaioli, P., Bisogno, L., Palmieri, G., Frati, L., Cifone, M.G., and Santoni, A. 1997. CD16 cross‐linking induces both secretory and extracellular signal‐regulated kinase (ERK)‐dependent cytosolic phospholipase A2 (PLA)2 activity in human natural killer cells. Involvement of ERK, but not PLA2, in CD16‐triggered granule exocytosis. J. Immunol. 158:3148‐3154.
   Miyazaki, T., Dierich, A., Benoist, C., and Mathis, D. 1996. Independent modes of natural killing distinguished in mice lacking Lag3. Science. 272:405‐408.
   Nakamura, M.C., Niemi, E.C., Fisher, M.J., Shulz, L.D., Seaman, W.E., and Ryan, J.C. 1997. Mouse Ly‐49A interrupts early signaling events in natural killer cell cytotoxicity and functionally associates with the SHP‐1 tyrosine phosphatase. J. Exp. Med. 185:673‐684.
   Neel, B.H. 1997. Role of phosphatases in lymphocyte activation. Curr. Opin. Immunol. 9:405‐420.
   Negishi, I., Motoyama, N., Nakayama, K., Senju, S., Hatakeyama, S., Zhang, Q., Chan, A.C., and Loh, D.Y. 1995. Essential role for ZAP‐70 in both positive and negative selection of thymocytes. Nature 376:435‐438.
   Newton, R.A., Thiel, M., and Hogg, N. 1997. Signaling mechanisms and the activation of leukocyte integrins. J. Leukoc. Biol. 61:422‐426.
   Olcese, L., Lang, P., Vely, F., Cambiaggi, A., Marguet, D., Blery, M., Hippen, K.L., Biassoni, R., Moretta, A., Moretta, L., Cambier, J.C., and Vivier, E. 1996. Human and mouse killer‐cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases. J. Immunol. 156:4531‐4534.
   Orloff, D.G., Ra, C., Frank, S.J., Klausner, R.D., and Kinet, J.‐P. 1990. Family of disulphide‐linked dimers containing the ζ and η chains of the T‐cell receptor and the γ chain of Fc receptors. Nature 347:189‐191.
   O'Shea, J.J., Weissman, A.M., Kennedy, I.C.S., and Ortaldo, J.R. 1991. Engagement of the natural killer cell IgG Fc receptor results in tyrosine phosphorylation of the ζ chain. Proc. Natl. Acad. Sci. U.S.A. 88:350‐354.
   O'Shea, J.J., McVicar, D.W., Kuhns, D.B., and Ortaldo, J.R. 1992. A role for protein tyrosine kinase activity in natural cytotoxicity as well as antibody‐dependent cellular cytotoxicity. J. Immunol. 148:2497‐2502.
   Palmieri, G., Serra, A., De Maria, R., Gismondi, A., Milella, M., Piccoli, M., Frati, L., and Santoni, A. 1995. Cross‐linking of alpha 4 beta 1 and alpha 5 beta 1 fibronectin receptors enhances natural killer cytotoxic activity. J. Immunol. 155:5314‐5322.
   Penix, L., Weaver, W.M., Pang, Y., Young, H.A., and Wilson, C.B. 1993. Two essential regulatory elements in the human interferon gamma promoter confer activation specific expression in T cells. J. Exp. Med. 178:1483‐1496.
   Perez‐Villar, J.J., Melero, I., Rodriguez, A., Carretero, M., Aramburu, J., Sivori, S., Orengo, A.M., Moretta, A., and Lopez‐Botet, M. 1995. Functional ambivalence of the Kp43 (CD94) NK cell‐associated surface antigen. J. Immunol. 154:5779‐5788.
   Perussia, B. 1991. Lymphokine‐activated killer cells, natural killer cells and cytokines. Curr. Opin. Immunol. 3:49‐55.
   Perussia, B. 1998. Fc receptors on natural killer cells. Curr. Top. Microbiol. Immunol. 230:63‐88.
   Pessino, A., Sivori, S., Bottino, C., Malaspina, A., Morelli, L., Moretta, L., Biassoni, R., and Moretta, A. 1998. Molecular cloning of NKp46: A novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188:953‐960.
   Peterson, E.J., Clements, J.L., Fang, N., and Koretzky, G.A. 1998. Adaptor proteins in lymphocyte antigen‐receptor signaling. Curr. Opin. Immunol. 10:337‐344.
   Pignata, C., Prasad, K.V.S., Robertson, M.K., Levine, H., Rudd, C.E., and Ritz, J. 1993. FcγRIIIA‐mediated signaling involves src family lck in human natural killer cells. J. Immunol. 151:6794‐6800.
   Qian, D. and Weiss, A. 1997. T cell antigen receptor signal transduction. Curr. Opin. Cell Biol. 9:205‐212.
   Ricciarda, G., Palmieri, G., Piccoli, M., Frati, L., and Santoni, A. 1996. CD16‐mediated p21ras activation is associated with Shc and p36 tyrosine phosphorylation and their binding with Grb2 in human natural killer cells. J. Exp. Med. 183:179‐186.
   Ryan, J.C., Niemi, E.C., Goldfien, R.D., Hiserodt, J.C., and Seaman, W.E. 1991. NKR‐P1, and activating molecule on rat natural killer cells, stimulates phosphoinositide turnover and a rise in intracellular calcium. J. Immunol. 147:3244‐3250.
   Ryan, J.C., Niemi, E.C., Nakamura, M.C., and Seaman, W.E. 1995. NKR‐P1A is a target‐specific receptor that activates natural killer cell cytotoxicity. J. Exp. Med. 181:1911‐1915.
   Salcedo, T.W., Kurosaki, T., Kanakaraj, P., Ravetch, J.V., and Perussia, B. 1993. Physical and functional association of p56lck with FcγRIIIA (CD16) in natural killer cells. J. Exp. Med. 277:1475‐1480.
   Scharenberg, A.M. and Kinet, J.‐P. 1998. PtdIns‐3,4,5‐P3: A regulatory nexus between tyrosine kinases and sustained calcium signals. Cell 94:5‐8.
   Schatzle, J.D., Sheu, S., Stepp, S., Mathew, P.A., Bennett, M., and Kumar, V. 1999. Characterization of inhibitory and stimulatory forms of the murine natural killer receptor 2B4. Proc. Natl. Acad. Sci. U.S.A. 96:3870‐3875.
   Seaman, W.E., Eriksson, E., Dobrow, R., and Imboden, J.B. 1987. Inositol trisphosphate is generated by a natural killer cell tumor line in response to target cells or to cross‐linked monoclonal antibody OX‐34: possible signaling role for the OX‐34 determinant during activation by target cells. Proc. Natl. Acad. Sci. U.S.A. 84:4239‐4243.
   Shibuya, A., Campbell, D., Hannum, C., Yssel, H., Franz‐Bacon, K., McClanahan, T., Kitamura, T., Nicholl, J., Sutherland, G.R., Lanier, L.L., and Phillips, J.H. 1996. DNAM‐1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4:573‐581.
   Shibuya, A., Lanier, L.L., and Phillips, J.H. 1998. Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule‐1 receptor. J. Immunol. 161:1671‐1676.
   Smith, K.M., Wu, J., Bakker, A.B., Phillips, J.H., and Lanier, L.L. 1998. Ly‐49D and Ly‐49H associate with mouse DAP12 and form activating receptors. J. Immunol. 161:7‐10.
   Songyang, Z., Shoelson, S.E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W.G., King, F., Roberts, T., Rafnofsky, S., Lechleider, R.J., Neel, B.G., Birge, R.B., Fajardo, J.E., Chou, M.M., Hanafusa, H., Schaffhausen, B., and Cantley, L.C. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72:767‐778.
   Stahls, A., Liwszyc, G.E., Couture, C., Mustelin, T., and Andersson, L.C. 1994. Triggering of human natural killer cells through CD16 induces tyrosine phosphorylation of the p72syk kinase. Eur. J. Immunol. 24:2491‐2496.
   Steele, T.A. and Brahmi, Z. 1988. Phosphatidylinositol metabolism accompanies early activation events in tumor target cell–stimulated human natural killer cells. Cell. Immunol. 112:402‐413.
   Sugie, K., Minami, Y., Kawakami, T., and Uchida, A. 1995. Stimulation of NK cells via leukocyte function associated antigan (LFA)‐1. J. Immunol. 154:1691‐1698.
   Tamir, I. and Cambier, J.C. 1998. Antigen receptor signaling: Integration of protein tyrosine kinase functions. Oncogene 17:1353‐1364.
   Ting, A.T., Einspahr, K.J., Abraham, R.T., and Leibson, P.J. 1991. Fcγ receptor signal transduction in natural killer cells. Coupling to phospholipase C via a G protein‐independent, but tyrosine kinase‐dependent pathway. J. Immunol. 147:3122‐3127.
   Ting, A.T., Karnitz, L.M., Schoon, R.A., Abraham, R.T., and Leibson, P.J. 1992. Fcγ receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)‐γ1 and PLC‐γ2 in natural killer cells. J. Exp. Med. 176:1751‐1755.
   Ting, A.T., Dick, C.J., Schoon, R.A., Karnitz, L.M., Abraham, R.T., and Leibson, P.J. 1995. Interaction between lck and syk family tyrosine kinases in Fcγ receptor‐initiated activation of natural killer cells. J. Biol. Chem. 270:16415‐16421.
   Trotta, R., Kanakaraj, P., and Perussia, B. 1996. FcγR‐dependent MAP kinase activation in leukocytes: A common signal transduction event necessary for expression of TNF‐α and early activation genes. J. Exp. Med. 184:1027‐1035.
   Trotta, R., Puorro, K.A., Paroli, M., Azzoni, L., Abebe, B., Eisenlohr, L.C., and Perussia, B. 1998. Dependence of both spontaneous and antibody‐dependent, granule exocytosis‐mediated NK cytotoxicity on extracellular signal‐regulated kinases. J. Immunol. 152:6648‐6656.
   Valiante, N.M., Phillips, J.H., Lanier, L.L., and Parham, P. 1996. Killer cell inhibitory receptor recognition of human leukocyte antigen (HLA) class I blocks formation of a pp36/PLC‐γ signaling complex in human natural killer (NK) cells. J. Exp. Med. 184:2243‐2250.
   Vely, F. and Vivier, E. 1997. Conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and noninhibitory/activatory counterparts. J. Immunol. 159:2075‐2077.
   Vitale, M., Bottino, C., Sivori, S., Sanseverino, L., Castriconi, R., Marcenaro, E., Augugliaro, R., Moretta, L., and Moretta, A. 1998. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non‐major histocompatibility complex‐restricted tumor cell lysis. J. Exp. Med. 187:2065‐2072.
   Vivier, E., Morin, P., O'Brien, C., Druker, B., Schlossman, S.F., and Anderson, P. 1991. Tyrosine phosphorylation of the FcγRIII(CD16): ζ complex in human natural killer cells. Induction by antibody‐dependent cytotoxicity but not by natural killing. J. Immunol. 146:206‐210.
   Vivier, E., da Silva, A.J., Ackerly, M., Levine, H., Rudd, C.E., and Anderson, P. 1993. Association of a 70‐kDa tyrosine phosphoprotein with the CD16:ζ :γ complex expressed in human natural killer cells. Eur. J. Immunol. 23:1872‐1876.
   Wang, K.S., Ritz, J., and Frank, D.A. 1999. IL‐2 induces STAT4 activation in primary NK cells and NK cell lines, but not T cells. J. Immunol. 162:299‐304.
   Wei, S., Gamero, A.M., Liu, J.H., Daulton, A.A., Valkov, N.I., Trapani, J.A., Larner, A.C., Weber, M.J., and Djeu, J.Y. 1998. Control of lytic function by mitogen‐activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line: Identification of perforin and granzyme B mobilization by functional ERK2. J. Exp. Med. 187:1763‐1765.
   Weiss, A. and Littman, D.R. 1994. Signal transduction by lymphocyte antigen receptors. Cell 76:263‐274.
   Welsh, R.M. 1984. Natural killer cells and interferon. Crit. Rev. Immunol. 5:55‐93.
   Wen, T., Zhang, L., Kung, S.K.P., Molina, T.J., Miller, R.G., and Mak, T.W. 1995. Allo‐skin graft rejection, tumor rejection and natural killer activity in mice lacking p56lck. Nature. 357:161‐164.
   Whalen, M.M., Doshi, R.N., and Bankhurst, A.D. 1992. Effects of pertussis toxin treatment in natural killer function. Immunology 75:402‐407.
   Williams, B.L., Schreiber, K.L., Zhang, W., Wange, R.L., Samelson, L.E., Leibson, P.J., and Abraham, R.T. 1998. Genetic evidence for differential coupling of syk family kinases to the T‐cell receptor: Reconstitution studies in a ZAP‐70‐deficient Jurkat T cell line. Mol. Cell. Biol. 18:1388‐1399.
   Windebank, K.P., Abraham, R.T., Powis, G., Olsen, R.A., Barna, T.J., and Leibson, P.J. 1988. Signal transduction during natural killer cell activation: Inositol generation and regulation by cAMP. J. Immunol. 141:3951‐3957.
   Xu, X. and Chong, A.S.‐F. 1996. Vav in natural killer cells is tyrosine phosphorylated upon cross‐linking of FcγRIIIA and is constitutively associated with a serine/threonine kinase. Biochem. J. 318:527‐532.
   Yablonski, D., Kuhne, M.R., Kadlecek, T., and Weiss, A. 1998. Uncoupling of nonreceptor tyrosine kinases from PLC‐γ1 in an SLP‐76‐deficient T cell. Science 281:413‐415.
   Yi, T., Cleveland, J.L., and Ihle, J.N. 1992. Protein tyrosine phosphatase containing SH2 domains: Characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12‐p13. Mol. Cell. Biol. 12:836‐846.
   Yokoyama, W.M. 1998. Natural killer cell receptors. Curr. Opin. Immunol. 10:298‐305.
   Yu, C.R., Young, H.A., and Ortaldo, J.R. 1998. Characterization of cytokine differential induction of STAT complexes in primary human T and NK cells. J. Leukoc. Biol. 64:245‐258.
   Zhang, W., Sloan‐Lancaster, J., Kitchen, J., Trible, R.P., and Samelson, L.E. 1998. LAT: The ZAP‐70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:83‐92.
   Zoller, K.E., MacNeil, I.A., and Brugge, J.S. 1997. Protein tyrosine kinases syk and ZAP‐70 display distinct requirements for src family kinases in immune response receptor signal transduction. J. Immunol. 158:1650‐1659.
PDF or HTML at Wiley Online Library