Identification of Human Memory‐Like NK Cells

Elena I. Kovalenko1, Maria A. Streltsova1, Leonid M. Kanevskiy1, Sophia A. Erokhina1, William G. Telford2

1 Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation, 2 National Cancer Institute, National Institutes of Health, Bethesda, Maryland
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 9.50
DOI:  10.1002/cpcy.13
Online Posting Date:  January, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Our understanding of NK biology is increased dramatically, a product of improved flow‐cytometric techniques for analyzing these cells. NK cells undergo significant changes in repertoire during differentiation. A repeating stimulus, such as a cytomegalovirus infection, may result in accumulation of certain types of highly differentiated NK cells designated as memory‐like, or adaptive NK cells. Adaptive NK cells are capable of rapid expansion and effective response to the recall stimulus. These cells differ significantly from conventional NK cells both functionally and phenotypically. Here we describe an approach for identification and analysis of adaptive NK cells in human peripheral blood. CD57‐positive cells with high expression of activating‐receptor NKG2C, increased expression of KIR receptors, lack of co‐expression with inhibitory receptor NKG2A, and decreased expression of activating receptor NCR3 (NKp30) all characterize this cell type. The flow‐cytometric method described below can identify this NK cell subset on a relatively simple flow cytometer. © 2017 by John Wiley & Sons, Inc.

Keywords: memory‐like NK cells; adaptive NK cells; NK cell repertoire; differentiation; CD57; NKG2A; NKG2C

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Significance Statement
  • Basic Protocol 1: Analysis of Memory‐Like NK Cells Associated with HCMV Infection Circulating in Human Blood
  • Support Protocol 1: Identification of HCMV Infection‐Associated Adaptive NK Cell Subset in NK Cells Ex Vivo‐Purified by Magnetic Separation
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Analysis of Memory‐Like NK Cells Associated with HCMV Infection Circulating in Human Blood

  Materials
  • Lymphocyte separation medium 1.077 (Lonza, cat. no. 17‐829E)
  • Human blood collected in heparin‐ or EDTA‐containing tubes
  • Phosphate‐buffered saline, pH 7.2 (PBS; Fisher Scientific, cat. no. 20‐012‐027)
  • Staining solution (see recipe)
  • Ice
  • Monoclonal antibodies:
    • Anti‐human CD3‐PE‐Cy7 (Beckman Coulter, clone UCHT1, cat. no. 6607100)
    • Anti‐human CD56‐APC [Beckman Coulter, clone N901 (HLDA6), cat. no. IM2474]
    • Anti‐human NKG2C‐AlexaFluor (AF) 488 (R&D Systems, clone 134591, cat. no. FAB138G‐100)
    • Anti‐human NKG2A‐PE (R&D Systems, clone no. 131411, cat. no. FAB1059P‐100)
    • Anti‐human KIR2DL2/DL3 (CD158b)‐PE (Miltenyi Biotech, clone DX27, cat. no. 130‐092‐618)
    • Anti‐human CD57‐PE (eBioscience, clone TB01, cat. no. 12‐0577‐42)
    • Anti‐human NKp30‐PE (eBioscience, clone AF29‐4D12, cat. no. 12‐3379‐42)
    • Anti‐human HLA‐DR‐FITC (Beckman Coulter, clone B8.12.2, cat. no. IM0463U)
  • 50‐ml conical centrifuge tubes (Fisher Scientific, cat. no. 14‐432‐22)
  • Centrifuge
  • Automatic pipets
  • Cell counter or hemacytometer
  • 5‐ml polystyrene round‐bottom tubes (Fisher Scientific, cat. no. 352008)
  • Multi‐laser flow cytometer with appropriate filters for collection of fluorescence emission
NOTE: For this protocol two 9‐ml tubes with blood should be enough. For the protocol 2Support Protocol (including NK cells separation) minimum 36 ml (four 9‐ml tubes) of blood should be taken.

Support Protocol 1: Identification of HCMV Infection‐Associated Adaptive NK Cell Subset in NK Cells Ex Vivo‐Purified by Magnetic Separation

  Additional Materials (also see protocol 1Basic Protocol)
  • Separation buffer (see recipe)
  • NK Cell Isolation Kit, human (MiltenyiBiotec, cat. no. 130‐092‐657) containing:
    • NK Cell Biotin‐Antibody Cocktail
    • NK Cell MicroBead Cocktail
  • 15‐ml conical centrifuge tubes (Fisher Scientific, cat. no. 14‐959‐53A)
  • 4°C incubator
  • MACS LD Columns (MiltenyiBiotec, cat. no. 130‐042‐901)
  • MidiMACS Separator (MiltenyiBiotec, cat. no. 130‐042‐302)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Berrien‐Elliott, M.M., Wagner, J.A., and Fehniger, T.A. 2015. Human cytokine‐induced memory‐like natural killer cells. J. Innate Immun. 7:563‐571. doi: 10.1159/000382019.
  Beziat, V., Traherne, J., Malmberg, J.A., Ivarsson, M.A., Bjorkstrom, N.K., Retiere, C., Ljunggren, H.G., Michaelsson, J., Trowsdale, J., and Malmberg, K.J. 2014. Tracing dynamic expansion of human NK‐cell subsets by high‐resolution analysis of KIR repertoires and cellular differentiation. Eur. J. Immunol. 44:2192‐2196. doi: 10.1002/eji.201444464.
  Beziat, V., Liu, L.L., Malmberg, J.A., Ivarsson, M.A., Sohlberg, E., Bjorklund, A.T., Retiere, C., Sverremark‐Ekstrom, E., Traherne, J., Ljungman, P., Schaffer, M., Price, D.A., Trowsdale, J., Michaelsson, J., Ljunggren, H.G., and Malmberg, K.J. 2013. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121:2678‐2688. doi: 10.1182/blood‐2012‐10‐459545.
  Bjorkstrom, N.K., Riese, P., Heuts, F., Andersson, S., Fauriat, C., Ivarsson, M.A., Bjorklund, A.T., Flodstrom‐Tullberg, M., Michaelsson, J., Rottenberg, M.E., Guzman, C.A., Ljunggren, H.G., and Malmberg, K.J. 2010. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK‐cell differentiation uncoupled from NK‐cell education. Blood 116:3853‐3864. doi: 10.1182/blood‐2010‐04‐281675.
  Evans, J.H., Horowitz, A., Mehrabi, M., Wise, E.L., Pease, J.E., Riley, E.M., and Davis, D.M. 2011. A distinct subset of human NK cells expressing HLA‐DR expand in response to IL‐2 and can aid immune responses to BCG. Eur. J. Immunol. 41:1924‐1933. doi: 10.1002/eji.201041180.
  Foley, B., Cooley, S., Verneris, M.R., Pitt, M., Curtsinger, J., Luo, X., Lopez‐Verges, S., Lanier, L.L., Weisdorf, D., and Miller, J.S. 2012. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119:2665‐2674. doi: 10.1182/blood‐2011‐10‐386995.
  Guma, M., Angulo, A., Vilches, C., Gomez‐Lozano, N., Malats, N., and Lopez‐Botet, M. 2004. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104:3664‐3671. doi: 10.1182/blood‐2004‐05‐2058.
  Hwang, I., Zhang, T., Scott, J.M., Kim, A.R., Lee, T., Kakarla, T., Kim, A., Sunwoo, J.B., and Kim, S. 2012. Identification of human NK cells that are deficient for signaling adaptor FcRgamma and specialized for antibody‐dependent immune functions. Int. Immunol. 24:793‐802. doi: 10.1093/intimm/dxs080.
  Lee, J., Zhang, T., Hwang, I., Kim, A., Nitschke, L., Kim, M., Scott, J.M., Kamimura, Y., Lanier, L.L., and Kim, S. 2015. Epigenetic modification and antibody‐dependent expansion of memory‐like NK cells in human cytomegalovirus‐infected individuals. Immunity 42:431‐442. doi: 10.1016/j.immuni.2015.02.013.
  Leung, W., Iyengar, R., Triplett, B., Turner, V., Behm, F.G., Holladay, M.S., Houston, J., and Handgretinger, R. 2005. Comparison of killer Ig‐like receptor genotyping and phenotyping for selection of allogeneic blood stem cell donors. J. Immunol. 174:6540‐6545. doi: 10.4049/jimmunol.174.10.6540.
  Locatelli, F., Pende, D., Mingari, M.C., Bertaina, A., Falco, M., Moretta, A., and Moretta, L. 2013. Cellular and molecular basis of haploidentical hematopoietic stem cell transplantation in the successful treatment of high‐risk leukemias: Role of alloreactive NK cells. Front. Immunol. 4:15. doi: 10.3389/fimmu.2013.00015.
  Luetke‐Eversloh, M., Hammer, Q., Durek, P., Nordstrom, K., Gasparoni, G., Pink, M., Hamann, A., Walter, J., Chang, H.D., Dong, J., and Romagnani, C. 2014. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog. 10:e1004441. doi: 10.1371/journal.ppat.1004441.
  Mahnke, Y.D. and Roederer M. 2007. Optimizing a multicolor immunophenotyping assay. Clin. Lab. Med. 27:469‐485. doi: 10.1016/j.cll.2007.05.002.
  Muccio, L., Bertaina, A., Falco, M., Pende, D., Meazza, R., Lopez‐Botet, M., Moretta, L., Locatelli, F., Moretta, A., and Chiesa, M.D. 2016. Analysis of memory‐like natural killer cells in human cytomegalovirus‐infected children undergoing alphabeta+T and B cell‐depleted hematopoietic stem cell transplantation for hematological malignancies. Haematologica 101:371‐381. doi: 10.3324/haematol.2015.134155.
  Muntasell, A., Pupuleku, A., Cisneros, E., Vera, A., Moraru, M., Vilches, C., and Lopez‐Botet, M. 2016. Relationship of NKG2C copy number with the distribution of distinct cytomegalovirus‐induced adaptive NK cell subsets. J. Immunol. pii:1502438. doi: 10.4049/jimmunol.1502438.
  O'Sullivan, T.E., Sun, J.C., and Lanier, L.L. 2015. Natural killer cell memory. Immunity 43:634‐645. doi: 10.1016/j.immuni.2015.09.013.
  Schlums, H., Cichocki, F., Tesi, B., Theorell, J., Beziat, V., Holmes, T.D., Han, H., Chiang, S.C., Foley, B., Mattsson, K., Larsson, S., Schaffer, M., Malmberg, K.J., Ljunggren, H.G., Miller, J.S., and Bryceson, Y.T. 2015. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42:443‐456. doi: 10.1016/j.immuni.2015.02.008.
  Wu, Z., Sinzger, C., Frascaroli, G., Reichel, J., Bayer, C., Wang, L., Schirmbeck, R., and Mertens, T. 2013. Human cytomegalovirus‐induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity. J. Virol. 87:7717‐7725. doi: 10.1128/JVI.01096‐13.
  Zhang, T., Scott, J.M., Hwang, I., and Kim, S. 2013. Cutting edge: Antibody‐dependent memory‐like NK cells distinguished by FcRgamma deficiency. J. Immunol. 190:1402‐1406. doi: 10.4049/jimmunol.1203034.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library