# Non‐Parametric Comparison of Single Parameter Histograms

### Abstract

A number of methods have been developed to compare single parameter histograms. Some perform a channel‐by‐channel analysis and others give a single statistic about how the histograms may or may not differ. If they do differ, then the significance of the difference or confidence limit is usually provided. The specific location(s) for the greatest deviations may also be given. Some are more effective at resolving severely overlapping populations and others work poorly when there is any significant overlap. Each method makes certain assumptions about the data. It is important to understand the assumptions being made and to understand the limitations of each method. It is essential to know how to identify when a comparison method will work for a given set of histograms. This unit explores the different methods, and provides a guide for the reader to choose the most appropriate method(s) to use for a specific data set(s). © 2018 by John Wiley & Sons, Inc.

Keywords: cumulative subtraction; Dmax; histogram analysis; histogram comparison; histogram subtraction; Kolmogorov‐Smirnov test; K‐S test; low cytometry; Overton subtraction

### Table of Contents

- Introduction
- Non‐Parametric Histogram Comparison Protocols
- When the Populations are Severely Overlapped and Poorly Resolved
- Using K‐S Test to Compare Histograms and Calculate The Positive Fraction
- Limitations of Non‐Parametric Histogram Comparison and Analysis Methods
- Commentary
- References
- Figures

### Figures

### Videos

### Literature Cited

References | |

Ault, K. (1979). Detection of small numbers of monoclonal B lymphocytes in the blood of patients with lymphoma. New England Journal of Medicine, 300, 1401–1405. doi: 10.1056/NEJM197906213002501. | |

Bagwell, C. (1981). IMMUNO program, Easy 2 software. Hialeah, FL: Coulter Corporation. | |

Bagwell, B. (1996). A journey through flow cytometric immunofluorescence analyses—Finding accurate and robust algorithms that estimate positive fraction distributions. Clinical Immunology Newsletter, 16, 33–37. doi: 10.1016/S0197‐1859(00)80002‐3. | |

Bagwell, B. (2005). HyperLog‐A flexible log‐like transform for negative, zero, and positive valued data. Cytometry Part A, 64A, 34–42. doi: 10.1002/cyto.a.20114. | |

Bagwell, C. B., Hudson, J. L., & Irvin, G. L. (1979). Nonparametric flow cytometry analysis. The Journal of Histochemistry and Cytochemistry, 27, 293–296. doi: 10.1177/27.1.374589. | |

Cox, C., Reeder, J., Robinson, R., Suppes, S., & Wheeless, L. (1988). Comparison of frequency distributions in flow cytometry. Cytometry, 9, 291–298. doi: 10.1002/cyto.990090404. | |

Finch, P. D. (1979). Substantive differences and the analysis of histograms from very large samples. The Journal of Histochemistry and Cytochemistry, 27, 800. doi: 10.1177/27.3.479554. | |

Habermehl, Pirmin (1989). Letters to the editor. Suggested for Overton's PASCAL procedure. Cytometry, 10, 492–493. doi: 10.1002/cyto.990100420. | |

Hoffman, R., & Wood, J. (2007). Characterization of flow cytometer instrument sensitivity. Current Protocols in Cytometry, 1.20.1–1.20.18. doi: 10.1002/0471142956.cy0120s40. | |

Hoffman, R. (1981). Simple analysis of immunofluorescence histograms. Wentworth‐by‐the‐Sea, NH: VIII Conference on Analytical Cytology and Cytometry, May 19– 25, 1981, Abstract 61. | |

Lampariello, F. (2000a). On the use of the Kolmogorov‐Smirnov statistical test for immunofluorescence histogram comparison. Cytometry, 39, 179–188. doi: 10.1002/(SICI)1097‐0320(20000301)39:3%3c179::AID‐CYTO2%3e3.0.CO;2‐I. | |

Lampariello, F. (2009a). Ratio analysis of cumulatives for labeled cell quantification for immunofluorescence histograms derived from cells expressing low antigen levels. Cytometry Part A, 75A, 665–674. doi: 10.1002/cyto.a.20755. | |

Lampariello, F. (2009b). Watson's analytical approach for immunofluorescence histogram analysis. Cytometry Part A, 75A, 798–802. doi: 10.1002/cyto.a.20757. | |

Marti, G., Schuette, W., Magruder, L., & Gralnick, H. (1986). A method to average immunofluorescent histograms. Cytometry, 7, 450–452. doi: 10.1002/cyto.990070510. | |

Moore, W. & Parks, D. (2012). Update for the logicle data scale including operational code implementations. Cytometry Part A, 81A, 273–277. doi: 10.1002/cyto.a.22030. | |

Novo, D. & Wood, J. (2008). Flow cytometry histograms: Transformations, resolution, and display. Cytometry Part A, 73A, 685–692. doi: 10.1002/cyto.a.20592. | |

Overton, W. R. (1988). Modified histogram subtraction technique for analysis of flow cytometric data. Cytometry, 9, 619–626. doi: 10.1002/cyto.990090617. | |

Overton, W. R. (1989). Reply to Habermehl. Cytometry, 10, 494. doi: 10.1002/cyto.990100421. | |

Parks, D., Roederer, M., & Moore, W. (2006). A new “logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry Part A, 69A, 541–551. doi: 10.1002/cyto.a.20258. | |

Pazur, H. L. & Swanson, L. A. (1972). Modern Methods for Statistical Analysis (pp. 397–399). Scranton, PA: Intext Educational Publishers. | |

Sladek, T. L. & Jacobberger, J. W. (1993). Flow cytometric titration of retroviral expression vectors: Comparison of methods for analysis of immunofluorescence histograms derived from cells expressing low antigen levels. Cytometry, 14, 23–31. doi: 10.1002/cyto.990140106. | |

Trotter, J. (2007). Alternatives to log‐scale data display. Current Protocols in Cytometry, 10.16.1–10.16.11. doi: 10.1002/0471142956.cy1016s42. | |

Watson, J. V. (2001). Proof without prejudice revisited: Immunofluorescence histogram analysis using cumulative frequency subtraction plus ratio analysis of means. Cytometry, 43, 55–68. doi: 10.1002/1097‐0320(20010101)43:1%3c55::AID‐CYTO1019%3e3.0.CO;2‐T. | |

Wood, J. (2001). Principles of gating. Current Protocols in Cytometry, 1.8.1–1.8.12. doi: 10.1002/0471142956.cy0108s03. | |

Young, I. T. (1977). Proof without prejudice: Use of the Kolmogorov‐Smirnov test for the analysis of histograms from flow systems and other sources. Cytometry, 7, 935–941. |