Estimation of Microbial Viability Using Flow Cytometry

Hazel M. Davey1, Douglas B. Kell2, Dieter H. Weichart3, Arseny S. Kaprelyants4

1 University of Wales, Aberystwyth, United Kingdom, 2 University of Manchester Institute of Science and Technology, Manchester, United Kingdom, 3 Max Planck Institut für Molekulare Genetik, Berlin, Germany, 4 Russian Academy of Sciences, Moscow, Russia
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 11.3
DOI:  10.1002/0471142956.cy1103s29
Online Posting Date:  September, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


For microorganisms in particular, viability is a term that is difficult to define and a state consequently difficult to measure. The traditional (and gold‐standard) usage equates viability and culturability (i.e., the ability to multiply), but the process of determining culturability is often too slow. Flow cytometry provides the opportunity to make rapid and quantitative measurements of dye uptake in large numbers of cells, and we can therefore exploit the flow cytometric approach to evaluate so‐called viability stains and to develop protocols for more routine assessments of microbial viability. This unit is primarily commentary, but several basic protocols have been included to ensure that users have a firm basis for attempting these reasonably difficult assays on traditional flow cytometer instruments. What is clear is that each assay must be carefully validated with the particular microorganism of interest before being applied in any research, clinical, or service form.

PDF or HTML at Wiley Online Library

Table of Contents

  • The Problem of Determining Viability
  • Fluorescent Stains for Microbial Viability Determination by Flow Cytometry
  • Estimations of Viability of Micrococcus Luteus
  • Use of Cell Sorting in Viability Studies
  • Conclusions
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

   Adams, M.R. and Hope, C.F.A. (eds.). 1989. Rapid Methods in Food Microbiology. Elsevier/North‐Holland, Amsterdam.
   Aeschbacher, M., Reinhardt, C.A., and Zbinden, G. 1986. A rapid cell membrane permeability test using fluorescent dyes and flow cytometry. Cell Biol. Toxicol. 2:247‐255.
   Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143‐169.
   Auger, J., Leonce, S., Jouannet, P., and Ronot, X. 1993. Flow cytometric sorting of living, highly motile human spermatozoa based on evaluation of their mitochondrial activity. J. Histochem. Cytochem. 41:1247‐1251.
   Back, J.P. and Kroll, R.G. 1991. The differential fluorescence of bacteria stained with acridine orange and the effects of heat. J. Appl. Bacteriol. 71:51‐58.
   Balajee, S.A. and Marr, K.A. 2002. Conidial viability assay for rapid susceptibility testing of Aspergillus species. J. Clin. Microbiol. 40:2741‐2745.
   Barer, M.R., Kaprelyants, A.S., Weichart, D.H., Harwood, C.R., and Kell, D.B. 1998. Microbial stress and culturability: Conceptual and operational domains. Microbiology. 144:2009‐2010.
   Beck, P. and Huber, R. 1997. Detection of cell viability in cultures of hyperthermophiles. FEMS Microbiol. Lett. 148:11‐14.
   Ben Amor, K., Breeuwer, P., Verbaarschot, P., Rombouts, F.M., Akkermans, A.D.L., De Vos, W.M., and Abee, T. 2002. Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. Appl. Environ. Microbiol. 68:5209‐5216.
   Bergersen, O., Ronning, O., Helleman, A.L., Vekterud, K., and Gjelsnes, O. 1995. Isolation and labelling of micro‐organisms for use in flow cytometry. 1995. NORDFOOD conference, Turku (Åbo), Finland.
   Berglund, D.L., Taffs, R.E., and Robertson, N.P. 1987. A rapid analytical technique for flow cytometric analysis of cell viability using calcofluor white M2R. Cytometry. 8:421‐426.
   Böhmer, R.M. 1985. Flow cytometric detection of a two‐step cell death induced by hyperthermia. Cytometry. 6:215‐218.
   Braux, A.S., Minet, J., TamanaiShacoori, Z., Riou, G., and Cormier, M. 1997. Direct enumeration of injured Escherichia coli cells harvested onto membrane filters. J. Microbiol. Methods. 31:1‐8.
   Breeuwer, P., Drocourt, J.L., Rombouts, F.M., and Abee, T. 1994. Energy‐dependent, carrier‐mediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow cytometry. Appl. Environ. Microbiol. 60:1467‐1472.
   Breeuwer, P., Drocourt, J.L., Bunschoten, N., Zwietering, M.H., Rombouts, F.M., and Abee, T. 1995. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl. Environ. Microbiol. 61:1614‐1619.
   Buchmeier, N.A. and Libby, S.J. 1997. Dynamics of growth and death within a Salmonella typhimurium population during infection of macrophages. Can. J. Microbiol. 43:29‐34.
   Button, D.K., Schut, F., Quang, P., Martin, R., and Robertson, B.R. 1993. Viability and isolation of marine bacteria by dilution culture—theory, procedures, and initial results. Appl. Environ. Microbiol. 59:881‐891.
   Chen, L.B. 1988. Mitochondrial membrane potential in living cells. Ann. Rev. Cell Biol. 4:155‐181.
   Chen, L.B., Summerhayes, I.C., Johnson, L.V., Walsh, M.L., Bernal, S.D., and Lampidis, T.J. 1982. Probing mitochondria in living cells with rhodamine 123. Cold Spring Harbor Symp. Quant. Biol. 46:141‐155.
   Clarke, R.G. and Pinder, A.C. 1998. Improved detection of bacteria by flow cytometry using a combination of antibody and viability markers. J. Appl. Microbiol. 84:577‐584.
   Comas, J. and Vives‐Rego, J. 1998. Enumeration, viability and heterogeneity in Staphylococcus aureus cultures by flow cytometry. J. Microbiol. Methods. 32:45‐53.
   Darzynkiewicz, Z., Staiano‐Coico, L., and Melamed, M.R. 1981. Increased mitochondrial uptake of rhodamine 123 during lymphocyte stimulation. Proc. Natl. Acad. Sci. U.S.A. 78:2383‐2387.
   Davey, H.M. and Kell, D.B. 1996. Flow cytometry and cell sorting of heterogeneous microbial populations—the importance of single‐cell analyses. Microbiol. Rev. 60:641‐696.
   Davey, H.M. and Kell, D.B. 1999. A portable flow cytometer for the detection and identification of microorganisms. In NATO Advanced Research Workshop on Rapid Methods for Monitoring the Environment for Biological Hazards. (P.J. Stopa, ed.). In press. Plenum, Warsaw, Poland.
   Davey, H.M., Kaprelyants, A.S., and Kell, D.B. 1993. Flow cytometric analysis, using rhodamine 123, of Micrococcus luteus at low growth rate in chemostat culture. In Flow Cytometry in Microbiology. (D. Lloyd, ed.) pp. 83‐93. Springer‐Verlag, London.
   Decamp, O., Rajendran, N., Nakano, H., and Nair, G.B. 1997. Estimation of the viability of Vibrio cholerae 0139 by assessing cell membrane integrity. Microbios. 92:83‐89.
   Deere, D., Porter, J., Edwards, C., and Pickup, R. 1995. Evaluation of the suitability of bis‐(1,3‐dibutylbarbituric acid) trimethine oxonol, (diBA‐C4(3)−), for the flow cytometric assessment of bacterial viability. FEMS Microbiol. Lett. 130:165‐169.
   Deere, D., Shen, J., Vesey, G., Bell, P., Bissinger, P., and Veal, D. 1998. Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast. 14:147‐160.
   Diaper, J.P. and Edwards, C. 1994a. Flow cytometric detection of viable bacteria in compost. FEMS Microbiol. Ecol. 14:213‐220.
   Diaper, J.P. and Edwards, C. 1994b. The use of fluorogenic esters to detect viable bacteria by flow cytometry. J. Appl. Bacteriol. 77:221‐228.
   Diaper, J.P., Tither, K., and Edwards, C. 1992. Rapid assessment of bacterial viability by flow cytometry. Appl. Microbiol. Biotechnol. 38:268‐272.
   Duffy, G. and Sheridan, J.J. 1998. Viability staining in a direct count rapid method for the determination of total viable counts on processed meats. J. Microbiol. Methods. 31:167‐174.
   Fabian, J., Nakazumi, H., and Matsuoka, M. 1992. Near‐infrared absorbing dyes. Chem. Rev. 92:1197‐1226.
   Frey, T. 1997. Correlated flow cytometric analysis of terminal events in apoptosis reveals the absence of some changes in some model systems. Cytometry. 28:253‐263.
   Fung, D.Y.C. 1994. Rapid methods and automation in food microbiology—a review. Food Rev. Int. 10:357‐375.
   Gant, V.A., Warnes, G., Phillips, I., and Savidge, G.F. 1993. The application of flow cytometry to the study of bacterial responses to antibiotics. J. Med. Microbiol. 39:147‐154.
   Garner, D., Thomas, C., and Allen, C. 1997. Effect of semen dilution on bovine sperm viability as determined by dual‐DNA staining and flow cytometry. J. Androl. 18:324‐331.
   Gjelsnes, O. and Tangen, R. 1994. Liquid flow cytometer, Norway/patent W094/29695.
   Green, L., Peterson, B., Steimel, L., Haeber, P., and Current, W. 1994. Rapid determination of antifungal activity by flow cytometry. J. Clin. Microbiol. 32:1088‐1091.
   Greenwood, D.R.S. and Peutherer, J. (eds.). 1992. Medical Microbiology. Churchill Livingston, London.
   Grogan, W.M. and Collins, J.M. 1990. Guide to Flow Cytometry Methods. Marcel Dekker, New York.
   Harris, C.M. and Kell, D.B. 1985. The estimation of microbial biomass. Biosensors. 1:17‐84.
   Hattori, T. 1988. The Viable Count: Quantitative and Environmental Aspects. Springer‐Verlag, Berlin.
   Haugland, R.P. 1996. Handbook of Fluorescent Probes and Research Chemicals, 6th ed. Molecular Probes, Inc., Eugene, Oreg.
   Ignatov, S.G., Krasilnikov, V.A., Pereligin, V.V., Kaprelyants, A.S., and Ostrovsky, D.N. 1981. Study of structural‐functional changes in membranes of E. coli after low‐temperature freezing. Biokhimiya. 46:1996‐2003.
   Ignatov, S.G., Andreeva, O.V., Evdokimova, O.A., Kaprelyants, A.S., and Ostrovsky, D.N. 1982. Study of the repair of membrane injury after low‐temperature freezing of E. coli. Biokhimiya. 47:1621‐1628.
   Iwagaki, H., Fuchimoto, S., Miyake, M., and Oirta, K. 1990. Increased mitochondrial uptake of rhodamine 123 during interferon‐gamma stimulation in Molt 16 cells. Lymphokine Res. 9:365‐369.
   Jacobsen, C.N., Rasmussen, J., and Jakobsen, M. 1997. Viability staining and flow cytometric detection of Listeria monocytogenes. J. Microbiol. Methods. 28:35‐43.
   Jepras, R.I., Carter, J., Pearson, S.C., Paul, F.E., and Wilkinson, M.J. 1995. Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl. Environ. Microbiol. 61:2696‐2701.
   Jepras, R.I., Paul, F.E., Pearson, S.C., and Wilkinson, M.J. 1997. Rapid assessment of antibiotic effects on Escherichia coli by bis‐ (1,3‐dibutylbarbituric acid) trimethine oxonol and flow cytometry. Antimicrob. Agents Chemother. 41:2001‐2005.
   Jernaes, M.W. and Steen, H.B. 1994. Staining of Escherichia coli for flow cytometry: Influx and efflux of ethidium bromide. Cytometry. 17:302‐309.
   Johnson, L.V., Walsh, M.L., and Chen, L.B. 1980. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. U.S.A. 77:990‐994.
   Johnson, L.V., Walsh, M.L., Bockus, B.J., and Chen, L.B. 1981. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell Biol. 88:526‐535.
   Jones, R.P. 1987. Measures of yeast death and deactivation and their meaning: Parts 1 and 2. Process Biochem. 22:118‐128.
   Joux, F., Lebaron, P., and Troussellier, M. 1997. Succession of cellular states in a Salmonella typhimurium population during starvation in artificial seawater microcosms. FEMS Microbiol. Ecol. 22:65‐76.
   Kaprelyants, A.S. and Kell, D.B. 1992. Rapid assessment of bacterial viability and vitality using rhodamine 123 and flow cytometry. J. Appl. Bacteriol. 72:410‐422.
   Kaprelyants, A.S. and Kell, D.B. 1993a. Dormancy in stationary‐phase cultures of Micrococcus luteus: Flow cytometric analysis of starvation and resuscitation. Appl. Environ. Microbiol. 59:3187‐3196.
   Kaprelyants, A.S. and Kell, D.B. 1993b. The use of 5‐cyano‐2,3‐ditolyl tetrazolium chloride and flow cytometry for the visualisation of respiratory activity in individual cells of Micrococcus luteus. J. Microbiol. Methods. 17:115‐122.
   Kaprelyants, A.S. and Kell, D.B. 1996. Do bacteria need to communicate with each other for growth? Trends Microbiol. 4:237‐242.
   Kaprelyants, A.S., Gottschal, J.C., and Kell, D.B. 1993. Dormancy in non‐sporulating bacteria. FEMS Microbiol. Rev. 104:271‐286.
   Kaprelyants, A.S., Mukamolova, G.V., and Kell, D.B. 1994. Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell‐free spent medium at high dilution. FEMS Microbiol. Lett. 115:347‐352.
   Kaprelyants, A.S., Mukamolova, G.V., Davey, H.M., and Kell, D.B. 1996. Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus using flow cytometry and cell sorting. Appl. Environ. Microbiol. 62:1311‐1316.
   Kaprelyants, A.S., Mukamolova, G.V., Kormer, S.S., Weichart, D.H., Young, M., and Kell, D.B. 1999. Intercellular signalling and the multiplication of prokaryotes: Bacterial cytokines. Symp. Soc. Gen. Microbiol. In press.
   Kell, D.B. 1988. Protonmotive energy‐transducing systems: Some physical principles and experimental approaches. In Bacterial Energy Transduction. (C.J. Anthony, ed.). Academic Press, London.
   Kell, D.B. 1992. The protonmotive force as an intermediate in electron transport‐linked phosphorylation: Problems and prospects. Curr. Top. Cell. Regul. 33:279‐289.
   Kell, D.B., Ryder, H.M., Kaprelyants, A.S., and Westerhoff, H.V. 1991. Quantifying heterogeneity: Flow cytometry of bacterial cultures. Antonie van Leeuwenhoek. 60:145‐158.
   Kell, D.B., Davey, H.M., Mukamolova, G.V., Votyakova, T.V., and Kaprelyants, A.S. 1995. A summary of recent work on dormancy in non‐sporulating bacteria: Its significance for marine microbiology and biotechnology. J. Marine Biotechnol. 3:24‐25.
   Kell, D.B., Kaprelyants, A.S., Weichart, D.H., Harwood, C.L., and Barer, M.R. 1998. Viability and activity in readily culturable bacteria: A review and discussion of the practical issues. Antonie van Leeuwenhoek. 73:169‐187.
   Korber, D.R., Choi, A., Wolfaardt, G.M., Ingham, S.C., and Caldwell, D.E. 1997. Substratum topography influences susceptibility of Salmonella enteritidis biofilms to trisodium phosphate. Appl. Environ. Microbiol. 63:3352‐3358.
   Langsrud, S. and Sundheim, G. 1996. Flow cytometry for rapid assessment of viability after exposure to a quaternary ammonium compound. J. Appl. Bacteriol. 81:411‐418.
   Lapinsky, S.E., Glencross, D., Car, N.G., Kallenbach, J.M., and Zwi, S. 1991. Quantification and assessment of viability of Pneumonocystis carinii organisms by flow cytometry. J. Clin. Microbiol. 29:911‐915.
   Lewis, K. 1994. Multidrug resistance pumps in bacteria: Variations on a theme. Trends Biochem. Sci. 19:119‐123.
   Lizard, G., Chardonnet, Y., Chignol, M.C., and Thivolet, J. 1990. Evaluation of mitochondrial content and activity with nonyl‐acridine orange and rhodamine 123: Flow cytometric analysis and comparison with quantitative morphometry. Cytotechnology. 3:179‐188.
   Lloyd, D. 1993. Flow cytometry in microbiology. Springer‐Verlag, London.
   López‐Amorós, R., Comas, J., and Vives‐Rego, J. 1995. Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation‐survival in seawater using rhodamine 123, propidium iodide, and oxonol. Appl. Environ. Microbiol. 61:2521‐2526.
   López‐Amorós, R., Castel, S., Comas, Riu J., and Vives‐Rego, J. 1997. Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC. Cytometry. 29:298‐305.
   MacDonell, M. and Hood, M. 1982. Isolation and characterization of ultramicrobacteria from a gulf coast estuary. Appl. Environ. Microbiol. 43:566‐571.
   Mason, D.J., Allman, R., Stark, J.M., and Lloyd, D. 1994. Rapid estimation of bacterial antibiotic susceptibility with flow cytometry. J. Microsc. 176:8‐16.
   Mason, D.J., López‐Amorós, R., Allman, R., Stark, J.M., and Lloyd, D. 1995a. The ability of membrane potential dyes and calcofluor white to distinguish between viable and non‐viable bacteria. J. Appl. Bacteriol. 78:309‐315.
   Mason, D.J., Power, E.G.M., Talsania, H., Phillips, I., and Gant, V.A. 1995b. Antibacterial action of ciprofloxacin. Antimicrob. Agents Chemother. 39:2752‐2758.
   Mason, D.J., Dybowski, R., Larrick, J.W., and Gant, V.A. 1997. Antimicrobial action of rabbit leukocyte CAP18(106‐137). Antimicrob. Agents Chemother. 41:624‐629.
   Maxwell, W. and Johnson, L. 1997. Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling, or cryopreservation. Mol. Reprod. Dev. 46:408‐418.
   Meyer, R.D. 1983. Legionella infections—a review of 5 years of research. Rev. Infect. Dis. 5:258‐278.
   Millard, P., Roth, B., Thi, H., Yue, S., and Haugland, R. 1997. Development of the FUN‐1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl. Environ. Microbiol. 63:2897‐2905.
   Mukamolova, G.V., Kaprelyants, A.S., Kell, D.B., and Young, M. 2003. Adoption of the transiently non‐culturable state: A bacterial survival strategy? Adv. Micr. Physiol. 47:65‐129.
   Mukamolova, G.V., Kaprelyants, A.S., Young, D.I., Young, M., and Kell, D.B. 1998a. A bacterial cytokine. Proc. Natl. Acad. Sci. U.S.A. 95:8916‐8921.
   Mukamolova, G.V., Yanopolskaya, N.D., Kell, D.B., and Kaprelyants, A.S. 1998b. . On resuscitation from the dormant state of Micrococcus luteus. Antonie van Leeuwenhoek. 73:237‐243.
   Nebe‐von Caron, G. and Anderson, W.A. 1996. Germination of spores characterized by fluorescent probes and flow cytometry. Cytometry. 23:115.
   Nebe‐von Caron, G. and Badley, R.A. 1996. Bacterial characterization by flow cytometry. In Flow Cytometry Applications in Cell Culture (M. Al‐Rubeai and A.N. Emery, eds.) pp. 257‐290. Marcel Dekker, New York.
   Niven, G.W. and Mulholland, F. 1998. Cell membrane integrity and lysis in Lactococcus lactis: The detection of a population of permeable cells in post‐logarithmic phase cultures. J. Appl. Microbiol. 84:90‐96.
   Norden, M.A., Kurzynski, T.A., Bownds, S.E., Callister, S.M., and Schell, R.F. 1995. Rapid susceptibility testing of Mycobacterium tuberculosis (H37RA) by flow cytometry. J. Clin. Microbiol. 33:1231‐1237.
   Parthuisot, N., Catala, P., Lemarchand, K., Baudart, J., and Lebaron, P. 2000. Evaluation of ChemChrome V6 for bacterial viability assessment in waters. J. Appl. Microbiol. 89:370‐380.
   Patonay, G. and Antoine, M.D. 1991. Near‐infrared fluorogenic labels—new approach to an old problem. Anal. Chem. 63:A321‐A326.
   Plovins, A., Alvarez, A.M., Ibanez, M., Molina, M., and Nombela, C. 1994. Use of fluorescein‐di‐β‐D‐galactopyranoside (FDG) and C12‐FDG as substrates for β‐galactosidase detection by flow cytometry in animal, bacterial, and yeast cells. Appl. Environ. Microbiol. 60:4638‐4641.
   Porro, D., Smeraldi, C., Martegani, E., Ranzi, B.M., and Alberghina, L. 1994. Flow cytometric determination of the respiratory activity in growing Saccharomyces cerevisiae populations. Biotechnol. Prog. 10:193‐197.
   Postgate, J.R. 1969. Viable counts and viability. Methods Microbiol. 1:611‐628.
   Postgate, J.R. 1976. Death in microbes and macrobes. In The Survival of Vegetative Microbes. (T.R.G. Gray and J.R. Postgate, eds.) pp. 1‐19. Cambridge University Press, Cambridge.
   Prudencio, C., Sansonetty, F., and CorteReal, M. 1998. Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae. Cytometry. 31:307‐313.
   Ray, B. and Speck, M.L. 1972. Repair of injury induced by freezing E. coli as influenced by the recovery medium. Appl. Microbiol. 24:258‐263.
   Ray, B. and Speck, M.L. 1973. Freeze‐injury in bacteria. CRC Crit. Rev. Clin. Lab. Sci. 4:161‐213.
   Rigsbee, W., Simpson, L.M., and Oliver, J.D. 1997. Detection of the viable but nonculturable state in Escherichia coli O157:H7. J. Food Saf. 16:255‐262.
   Rodriguez, G.G., Phipps, D., Ishiguro, K., and Ridgway, H.F. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58:1801‐1808.
   Ronot, X., Paillasson, S., and Muirhead, K.A. 1996. Assessment of cell viability in mammalian cell lines. In Flow Cytometry Applications in Cell Culture. (M. Al‐Rubeai and A.N. Emery, eds.) pp. 177‐192. Marcel Dekker, New York.
   Roszak, D.B. and Colwell, R.R. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365‐379.
   Roth, B., Poot, M., Yue, S., and Millard, P. 1997. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol. 63:2421‐2431.
   Rye, H.S., Yue, S., Wemmer, D.E., Queseda, M.A., Haugland, R.P., Mathies, R.A., and Glazer, A.N. 1992. Stable fluorescent complexes of double‐stranded DNA with bis‐intercalating asymmetric cyanine dyes: Properties and applications. Nucl. Acids Res. 20:2803‐2812.
   Rye, H.S., Dabora, J.M., Queseda, M.A., Mathies, R.A., and Glazer, A.N. 1993a. Fluorometric assay using dimeric dyes for double‐ and single‐stranded DNA and RNA with picogram sensitivity. Anal. Biochem. 208:144‐150.
   Rye, H.S., Yue, S., Quesada, M.A., Haugland, R.P., Mathies, R.A., and Glazer, A.N. 1993b. Picogram detection of stable dye‐DNA intercalation complexes with two‐color laser‐excited confocal fluorescence gel scanner. Methods Enzymol. 217:414‐431.
   Schmid, I., Krall, W.J., Üittenbogaart, C.H., Braun, J., and Giorgi, J.V. 1992. Dead cell discrimination with 7‐amino‐actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 13:204‐208.
   Schut, F., Devries, E.J., Gottschal, J.C., Robertson, B.R., Harder, W., Prins, R.A., and Button, D.K. 1993. Isolation of typical marine bacteria by dilution culture—growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59:2150‐2160.
   Shapiro, H.M. 1995. Practical Flow Cytometry, 3rd ed. Alan R. Liss, New York.
   Shealy, D.B., Lipowska, M., Lipowski, J., Narayanan, N., Sutter, S., Strekowski, L., and Patonay, G. 1995a. Synthesis, chromatographic separation, and characterization of near‐infrared‐labeled DNA oligomers for use in DNA sequencing. Anal. Chem. 67:247‐251.
   Shealy, D.B., Lohrmann, R., Ruth, J.R., Narayanan, N., Sutter, S.L., Casay, G.A., Evans, L., and Patonay, G. 1995b. Spectral characterization and evaluation of modified near‐infrared laser dyes for DNA sequencing. Appl. Spectrosc. 49:1815‐1820.
   Suller, M.T.E., Stark, J.M., and Lloyd, D. 1997. A flow cytometric study of antibiotic‐induced damage and evaluation as a rapid antibiotic susceptibility test for methicillin‐resistant Staphylococcus aureus. J. Antimicrob. Chemother. 40:77‐83.
   Swarts, A.J., Hastings, J.W., Roberts, R.F., and vonHoly, A. 1998. Flow cytometry demonstrates bacteriocin‐induced injury to Listeria monocytogenes. Curr. Microbiol. 36:266‐270.
   Taghi‐Kilani, R., Gyurek, L.L., Millard, P.J., Finch, G.R., and Belosevic, M. 1996. Nucleic‐acid stains as indicators of Giardia muris viability following cyst inactivation. Int. J. Parasitol. 26:637‐646.
   Terzieva, S., Donnelly, J., Ulevicius, V., Grinshpun, S.A., Willeke, K., Stelma, G.N., and Brenner, K.P. 1996. Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Appl. Environ. Microbiol. 62:2264‐2272.
   Ueckert, J., Breeuwer, P., Abee, T., Stephens, P., von Caron, G.N., and ter Steeg, P.F. 1995. Flow cytometry applications in physiological study and detection of foodborne microorganisms. Int. J. Food Microbiol. 28:317‐326.
   Virta, M., Lineri, S., Kankaapaa, P., Karp, M., Peltonen, K., Nuutila, J., and Lilius, E.M. 1998. Determination of complement‐mediated killing of bacteria by viability staining and bioluminescence. Appl. Environ. Microbiol. 64:515‐519.
   Votyakova, T.V., Kaprelyants, A.S., and Kell, D.B. 1994. Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in extended stationary phase: The population effect. Appl. Environ. Microbiol. 60:3284‐3291.
   Votyakova, T.V., Mukamolova, G.V., Shtein Margolina, V.A., Popov, V.I., Davey, H.M., Kell, D.B., and Kaprelyants, A.S. 1998. Research on the heterogeneity of a Micrococcus luteus culture during an extended stationary phase: Subpopulation separation and characterization. Microbiology. 67:71‐77.
   Wallner, H., Amann, R., and Beisker, W. 1993. Optimizing fluorescent in situ hubridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 14:136‐143.
   Watson, L. 1987. The Biology of Death (previously published as The Romeo Error). Sceptre Books, London.
   Weir, S.C., Lee, H., and Trevors, J.T. 1996. Effect of selected disinfectants on the persistence and movement of a genetically‐engineered Pseudomonas sp. in soil. Syst. Appl. Microbiol. 19:421‐427.
   Wenisch, C., Linnau, K., Parschalk, B., Zedtwitz‐Liebenstein, K., and Georgopoulos, A. 1997. Rapid susceptibility testing of fungi by flow cytometry using vital staining. J. Clin. Microbiol. 35:5‐10.
   Wilson, H.A. and Chused, T.M. 1985. Lymphocyte membrane potential and Ca2+ sensitive potassium channels described by oxonol dye fluorescence measurements. J. Cell. Physiol. 125:72‐81.
   Yurkow, E.J. and McKenzie, M.A. 1993. Characterization of hypoxia‐dependent peroxide production in cultures of Saccharomyces cerevisiae using flow cytomtery: A model for ischemic tissue destruction. Cytometry. 14:287‐293.
Key References
   Amann et al., 1995. See above.
  Important review of microbial diversity and phytogenetics using nucleic acid probe methods that do not require microbial cultivation.
   Davey and Kell, 1996. See above.
  Extensive review of the application of flow cytometry to problems of (mainly) microbiological interest. Includes 1073 literature references.
   Porter, J., Deere, D., Hardman, M., Edwards, C., and Pickup, R. 1997. Go with the flow—use of flow cytometry in environmental microbiology. FEMS Microbiol. Ecol. 24:93‐101.
  A useful review of the applications of flow cytometry in environmental microbiology.
   Shapiro, 1995. See above.
  The Book. A detailed and entertaining overview. All you ever wanted to know about flow cytometry but were afraid to ask.
   Troussellier, M., Courties, C., and Vaquer, A. 1993. Recent applications of flow cytometry in aquatic microbial ecology. Biol. Cell 78:111‐121.
  Another short but useful review of applications of flow cytometry in environmental microbiology, concentrating on aquatic systems.
Internet Resources
  The Aberystwyth flow cytometry site has information on microbial flow cytometry, including viability determinations.
  Microbial flow cytometry section with contributions from several authors on viability measurements.
  Source for many viability stains, including viability kits.
  Includes useful application notes on microbial cytometry.
  Application notes on the analysis and enumeration of microorganisms.
PDF or HTML at Wiley Online Library