DNA/RNA Analysis of Phytoplankton by Flow Cytometry

Dominique Marie1, Nathalie Simon1, Laure Guillou1, Frédéric Partensky1, Daniel Vaulot1

1 INSU et Université Pierre et Marie Curie, Roscoff, France
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 11.12
DOI:  10.1002/0471142956.cy1112s11
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The past 10 years or so have seen the combination of molecular and biochemical techniques within the confines of cytometry. The use of flow cytometry in microbiology is finally coming of age. This unit carefully defines the criteria for evaluation of DNA and RNA in phytoplankton. Of course not everyone works with phytoplankton, but the methods outlined are very appropriately representative for other organisms. In addition, the unit discusses the methods for evaluating cell cycle and discriminating specific taxa using fluorescent oligonucleotide probes targeted to 18S rRNA.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Determining Genome Size and Ploidy Level of Phytoplankton
  • Basic Protocol 2: Cell Cycle Analysis of Phytoplankton
  • Basic Protocol 3: Identifying Phytoplankton Using Whole‐Cell Hybridization with Taxon‐Specific Fluorescent Oligonucleotide Probes
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Determining Genome Size and Ploidy Level of Phytoplankton

  Materials
  • Cell suspension (1–5 × 105 cells/ml)
  • Nucleus isolation buffer (NIB; see recipe; add 5 µl of 1 M sodium bisulfite per ml buffer immediately before use and filter through 0.2‐µm pore‐size filter)
  • Internal reference (i.e., suspension of nuclei or cells from species for which genome size is known, at ∼1 × 105 cells/ml)
  • 1% (w/v) RNase A (type IA, Sigma) in distilled water (heat 10 min at 90°C to degrade contaminating DNase)
  • Nucleic acid–specific stain (see Table 11.12.1 for concentrations)
  • 0.2‐µm pore‐size filters for plastic syringes
  • 10 µm nylon mesh
  • Flow cytometer with laser emitting UV, violet, and blue lines (also see )
    Table 1.2.1   MaterialsDyes Used for Determination of Genome Size and Cell Cycle Analysis of Planktonic Cells

    Dye MW Absorption maximum (λ A; nm) Fluorescence maximum (λ F; nm) Working conc. Final conc.
    Ethidium bromide 394  518  605 0.1 mg/ml  5 µg/ml
    Propidium iodide 668  535  617 0.1 mg/ml  5 µg/ml
    Mithramycin 1085  433  570  1 mg/ml 30 µg/ml
    Chromomycin A 1183  420  560  1 mg/ml 30 µg/ml
    DAPI 350  357  451 0.1 mg/ml  1 µg/ml
    Hoechst 33342 652  365  502 0.1 mg/ml  1 µg/ml
    TOTO‐1 1303  514  533  1 µM 30 nM
    YOYO‐1 1271 491/450 a 509/550a a  1 µM 30 nM
    TO‐PRO‐1 645  515  531  1 µM 30 nM
    YO‐PRO‐1 629 491/450 a 509/550 a  1 µM 30 nM
    PicoGreen  NA b  480  520  1/10 1/1000
    SYBR Green I  NA b  494  521  1/100 1/10,000

     aNumber before slash is according to manufacturer; number after slash is according to Hirons et al. ( ).
     bNA, molecular weight not available from manufacturer.

Basic Protocol 2: Cell Cycle Analysis of Phytoplankton

  Materials
  • 0.05% (w/v) glutaraldehyde/1% (w/v) paraformaldehyde
  • Cell suspension (1–5 × 105 cells/ml)
  • 1% (w/v) RNase A (type IA, Sigma) in distilled water (heat 10 min at 90°C to degrade contaminating DNase)
  • 1 M potassium citrate
  • SYBR Green I working solution (dilute commercial stock solution from Molecular Probes 1:100 in distilled water)
  • 1× 105 beads/ml suspension of 0.95‐µm fluorescent microspheres (Polysciences)
  • Flow cytometer equipped with a laser emitting at 488 nm (also see )

Basic Protocol 3: Identifying Phytoplankton Using Whole‐Cell Hybridization with Taxon‐Specific Fluorescent Oligonucleotide Probes

  Materials
  • Phytoplanktonic cells of interest
  • Culture medium for marine phytoplankton (sea water with appropriate nutrients; see http://ccmp.bigelow.org/CI/CI_01.html)
  • 10% (w/v) paraformaldehyde stock (store at −20°C)
  • 70:30 (v/v) ethanol/PBS, −20°C (see appendix 2A for PBS)
  • Hybridization buffer (see recipe) of optimal formamide concentration
  • 50 ng/µl fluorescein isothiocyanate (FITC)–labeled probe to be tested (see and unit 8.3)
  • Washing buffer (see recipe) with the same stringency as the hybridization buffer
  • Phosphate‐buffered saline (PBS; appendix 2A), pH 9.0
  • 1 × 105 beads/ml suspension of 0.95‐µm fluorescent microspheres (Polysciences)
  • Hybridization oven, or any oven or incubator whose temperature can be precisely tuned
  • Flow cytometer equipped with 488‐nm argon laser (also see )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Amann, R.I. 1995. In situ identification of microorganisms by whole cell hybridization with rRNA‐targeted nucleic acid probes. In Molecular Microbial Ecology Manual (A.D.L. Akkermann, J.D. van Elsas, and F.J. de Bruijn, eds.) pp. 1‐15. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  The authors wish to acknowledge support by grants from the European Community MAST III programs (MAS3‐CT96‐015‐MEDEA, MAS3‐CT97‐0128‐PROMOLEC), and from the JGOFS‐France PROSOPE program. The FACSort flow cytometer was funded in part by CNRS‐INSU and the Région Bretagne.
   Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. 1990. Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:1919‐1925.
   Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143‐169.
   Boucher, N., Vaulot, D., and Partensky, F. 1991. Flow cytometric determination of phytoplankton DNA in cultures and oceanic populations. Mar. Ecol. Prog. Ser. 71:75‐84.
   Brown, S.C., Bergounioux, C., Tallet, S., and Marie, D. 1991. Flow cytometry of nuclei for ploidy and cell cycle analysis In Practical Guide to Plant Cellular and Molecular Techniques (I. Negrutiu and G. Gharti‐Chhertri eds.) pp. 26‐345. Birkhaüser, Basel.
   Carpenter, E.J. and Chang, J. 1988. Species‐specific phytoplankton growth rates via diel DNA synthesis cycles: Concept of the method. Mar. Ecol. Prog. Ser. 43:105‐111.
   Chang, J. and Carpenter, E.J. 1991. Species‐specific phytoplankton growth rates via diel DNA synthesis cycles. V. Application to natural populations in Long Island Sound. Mar. Ecol. Prog. Ser. 78:115‐122.
   Courties, C., Perasso, R., Chrétiennot‐Dinet, M‐J., Gouy, M., Guillou, L., and Trousselier, M. 1998. Phylogenetic analysis and genome size of Ostreococcus tauri (Chlorophyta, Prasinophyceae). J. Phycol. 34:844‐849.
   Durand, R.E. 1999. Calibration of flow cytometer detector system. In Flow Cytometry (Z. Darzynkiewicz, J.P. Robinson, and H.A. Crissman, eds.) pp. 647‐654. Academic Press, San Diego.
   Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P., and Firoozabady, E. 1983. Rapid flow cytometric analysis of the cell cycle in plant tissues. Science 220:1049‐1051.
   Haugland, R.P. 1996. Handbook of Fluorescent Probes and Research Chemicals. 6th Edition. Molecular Probes, Inc., Eugene, Oreg.
   Hirons, G.T., Fawcett, J.J., and Crissman, H.A. 1994. TOTO and YOYO: New very bright fluorochromes for DNA content analysis by flow cytometry. Cytometry 15:129‐140.
   Jacquet, S., Lennon, J.F., Marie, D., and Vaulot, D. 1998. Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnol. Oceanogr. 43:1916‐1931.
   Lange, M., Guillou, L., Vaulot, D., Simon, N., Amann, R.I., Ludwig, W., and Medlin, L.K. 1996. Identification of the class Prymnesiophyceae and the genus Phaeocystis with ribosomal RNA‐targeted nucleic acid probes detected by flow cytometry. J. Phycol. 32:858‐868.
   Le Gall, Y., Brown, S., Marie, D., Mejjad, M., and Kloareg, B. 1993. Quantification of nuclear DNA and G‐C content in marine macroalgae by flow cytometry of isolated nuclei. Protoplasma 173:123‐132.
   Lim, E.L., Amaral, L.A., Caron, D.A., and DeLong, E.F. 1993. Application of rRNA‐based probes for observing marine nanoplanktonic protists. Appl. Environ. Microbiol. 59:1647‐1655.
   Liu, H.B., Nolla, H.A., and Campbell, L. 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12:39‐47.
   Marie, D., Vaulot, D., and Partensky, F. 1996. Application of the novel nucleic acid dyes YOYO‐1, YO‐PRO‐1 and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl. Environ. Microbiol. 62:1649‐1655.
   Marie, D., Partensky, F., Jacquet, S., and Vaulot, D. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green‐I. Appl. Environ. Microbiol. 93:186‐193.
   Partensky, F. and Vaulot, D. 1989. Cell size differentiation in the bloom‐forming dinoflagellate Gymnodinium cf. nagasakiense. J. Phycol. 25:741‐750.
   Pernthaler, J., Alfreider, A., Posch, T., Andreatta, S., and Psenner, R. 1997. In situ classification and image cytometry of pelagic bacteria from a high mountain lake (Gossenköllesee, Austria) Appl. Environ. Microbiol. 63:4778‐4783.
   Rice, J., O'Connor, C.D., Sleigh, M.A., Burkill, P.H., Giles, I.G., and Zubkov, M.V. 1997a. Fluorescent oligonucleotide rDNA probes that specifically bind to a common nanoflagellate, Paraphysomonas vestita. Microbiology 143:1717‐1727.
   Rice, J., O'Connor, C.D., Sleigh, M.A., Burkill, P.H., Tarran, G.A., O'Connor, C.D., and Zubkov, M.V. 1997b. Flow cytometric analysis of characteristics of hybridization of species‐specific fluorescent oligonucleotide probes to rRNA of marine nanoflagellates. Appl. Environ. Microbiol. 63:938‐944.
   Rippka, R., Coursin, T., Lichtlé, C., Partensky, F., Houmard, J., and Herdman, M., Prochlorococcus sp. PCC 9511, an axenic, marine, chlorophyll b‐containing oxyphotobacterium. Int. J. Syst. Bacteriol. Submitted for publication.
   Schönhuber, W., Fuchs, B., Juretschko, S., and Amann, R. 1997. Improved sensitivity of whole‐cell hybridization by the combination of horseradish peroxidase‐labeled oligonucleotides and tyramide signal amplification. Appl. Environ. Microbiol. 63:3268‐3273.
   Schönhuber, W., Zarda, B., Eix, S., Rippka, R., Herdman, M., Ludwig, W., and Amann, R. 1999. In situ identification of cyanobacteria with horseradish peroxidase‐labeled, rRNA‐targeted oligonucleotide probes. Appl. Environ. Microbiol. 65:1259‐1267.
   Simon, N., Campbell, L., Örnolfsdottir, E., Groben, R., Guillou, L., Lange, M., and Medlin, L.K., Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole‐cell hybridization. J. Eukaryot. Microbiol. In press
   Simon, N., Barlow, R.G., Marie, D., Partensky, F., and Vaulot, D. 1994. Flow cytometry analysis of oceanic photosynthetic picoeucaryotes. J. Phycol. 30:922‐935.
   Simon, N., Lebot, N., Marie, D., Partensky, F., and Vaulot, D. 1995. Fluorescent in situ hybridization with rRNA‐targeted oligonucleotide probes to identify small phytoplankton by flow cytometry. Appl. Environ. Microbiol. 61:2506‐2513.
   Simon, N., Brenner, J., Edvardsen, B., and Medlin, L.K. 1997. The identification of Chrysochromulina and Prymnesium species (Haptophyta, Prymnesiophyceae) using fluorescent or chemiluminescent oligonucleotide probes: A means for improving studies on toxic algae. Eur. J. Phycol. 32:393‐401.
   Stahl, D.A. and Amann, R.I. 1991. Development and application of nucleic acid probes in bacterial systematics In Nucleic Acid Techniques in Bacterial Systematics (E. Stackebrandt and M. Goodfellow, eds.) pp. 205‐248. John Wiley & Sons Ltd, Chichester, England.
   Vaulot, D. 1989. CYTOPC: Processing software for flow cytometric data. Signal and Noise 2:8.
   Vaulot, D., Olson, R.J., and Chisholm, S.W. 1986. Light and dark control of the cell cycle in two phytoplankton species. Exp. Cell. Res. 167:38‐52.
   Vaulot, D., Birrien, J‐L., Marie, D., Casotti, R., Veldhuis, M.J.W., Kraay, G.W., and Chrétiennot‐Dinet, M‐J. 1994. Morphology, ploidy, pigment composition and genome size of cultured strains of Phaeocystis (Prymnesiophyceae). J. Phycol. 30:1022‐1035.
   Vaulot, D., Marie, D., Olson, R.J., and Chisholm, S.W. 1995. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268:1480‐1482.
   Veldhuis, M.J.W., Cucci, T.L., and Sieracki, M.E. 1997. Cellular DNA content of marine phytoplankton using two new fluorochromes: Taxonomic and ecological implications. J. Phycol. 33:527‐541.
   Wallner, G., Amann, R., Beisker, W. 1993. Optimizing fluorescent in situ hybridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136‐143.
   Wallner, G., Fuchs, B., Spring, S., Beisker, W., and Amann, R. 1997. Flow sorting of microorganisms for molecular analysis. Appl. Environ. Microbiol. 63:4223‐4231.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library