Use of Spectral Fluorescence Resonance Energy Transfer to Detect Nitric Oxide‐Based Signaling Events in Isolated Perfused Lung

Claudette M. St. Croix1, Eileen M. Bauer2

1 Center for Biological Imaging, Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 2 Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 12.13
DOI:  10.1002/0471142956.cy1213s45
Online Posting Date:  July, 2008
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Fluorescence resonance energy transfer (FRET) is a fluorescence microscopy technique suitable for live cells and capable of detecting changes in the conformational state of a single protein or the distance between two interacting proteins when the proteins are conjugated with appropriate donor and acceptor fluorophores. Confocal‐based spectral detection systems enable the resolution of fluorescent images by providing full spectral information for each voxel of the image without switching of optical filters. Furthermore, using calibration spectra, it is possible to unambiguously separate the cross‐talk between overlapping donor and acceptor emissions. This unit describes the use of confocal‐based spectral imaging of nitric oxide (NO) sensitive FRET reporters in the vasculature of the intact, isolated perfused mouse lung. This type of in situ imaging approach allows the visualization and study of temporal molecular signaling events within the appropriate physiologic microenvironment of the intact, living organ. Curr. Protocol. Cytom. 45:12.13.1‐12.13.12. © 2008 by John Wiley & Sons, Inc.

Keywords: nitric oxide; fluorescence resonance energy transfer; lung; confocal microscopy

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Isolating and Perfusing Mouse Lung
  • Basic Protocol 2: No‐Induced Protein Modifications Detected by FRET Using Spectral Confocal Microscopy
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolating and Perfusing Mouse Lung

  Materials
  • Lipsosomes: 1:1 molar ratio of 1,2‐dioleoyl‐3‐trimethylammonium‐propane (DOTAP)/cholesterol (see Ma et al., , b)
  • Fluorescent reporter construct: e.g., FRET‐MT adenovirus or cygnet‐2 reporter (see ), containing cyan fluorescent protein (CFP; λ ex = 440, λ em = 480) and yellow fluorescent protein (YFP; λ ex = 514, λ em = 527)
  • C57BL/6J adult male mice (e.g., The Jackson Laboratory)
  • 0.9% (w/v) NaCl
  • 20 mg/ml Avertin working solution (see recipe)
  • Heparin
  • Perfusion buffer (see recipe)
  • Mouse restrainer (e.g., see Donovan and Brown, )
  • Insulin syringe (for injecting liposomes and DNA)
  • Peristaltic pump
  • Pressure transducers
  • Premixed normal O 2 gas cylinders (5% CO 2, 21% O 2, balance N 2)
  • Scalpel, curved needle, silk sutures, sterile gauze
  • 1‐cc syringe with 26‐G needle (for injecting anesthesia)
  • 20‐G blunt metal cannula (e.g., Luer stub LS20, Instech Laboratories)
  • Blunt‐tipped surgical scissors
  • Dissecting microscope with 2× magnification
  • Curved‐tip hemostats
  • Pulmonary artery (PA) and left atrial (LA) cannulae (i.d., 1.0 mm; o.d., 1.6 mm)
  • Petri dish with coverslip bottom (e.g., Delta T dish, Bioptics)
  • Perfusate and airway lines: polyethylene PE‐50 tubing
  • Humidified environmental chamber: 6 × 6 × 2–in. Plexiglas chamber custom built in‐house to fit atop the Zeiss 510 META microscope stage; contains a small, 37°C heated water bath and ports for tracheal, pulmonary arterial, and atrial cannulae and a port with tubing for premixed gas tanks (see Fig. )
  • Spectral detection microscope system (e.g., Zeiss 510 METASystem with 40× PlanNeoFluar, 1.3‐NA, oil‐immersion objective)

Basic Protocol 2: No‐Induced Protein Modifications Detected by FRET Using Spectral Confocal Microscopy

  Materials
  • Isolated perfused lung (IPL) preparation from mouse expressing a FRET reporter ( protocol 1)
  • 500 µM nitric oxide (NO) donor in perfusion buffer (see recipe): e.g., dilute with perfusion buffer from 100 mM DETA NONOate (Alexis Biochemicals) solution in H 2O, pH 8
  • Spectral detection microscope system (e.g., Zeiss 510 META with 40× PlanNeoFluar, 1.3‐NA, oil‐immersion objective) and computer with data acquisition and analysis software (e.g., Zeiss)
  • Argon laser (HFT 458, Zeiss)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Al‐Mehdi, A.B., Zhao, G., Dodia, C., Tozawa, K., Costa, K., Muzykantov, V., Ross, C., Blecha, F., Dinauer, M., and Fisher, A.B. 1998a. Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ. Res. 83:730‐737.
   Al‐Mehdi, A.B., Zhao, G., and Fisher, A.B. 1998b. ATP‐independent membrane depolarization with ischemia in the oxygen‐ventilated isolated rat lung. Am. J. Respir. Cell. Mol. Biol. 18:653‐661.
   Bai, C., Fukuda, N., Song, Y., Ma T, Matthay, M.A., and Verkman, A.S. 1999. Lung fluid transport in aquaporin‐1 and aquaporin‐4 knockout mice. J. Clin. Invest. 103:555‐561.
   Carter, E.P., Matthay, M.A., Farinas, J., and Verkman, A.S. 1996. Transalveolar osmotic and diffusional water permeability in intact mouse lung measured by a novel surface fluorescence method. J. Gen. Physiol 108:133‐142.
   Carter, E.P., Olveczky, B.P., Matthay, M.A., and Verkman, A.S. 1998. High microvascular endothelial water permeability in mouse lung measured by a pleural surface fluorescence method. Biophys. J. 74:2121‐2128.
   Chang, S.‐W. and Voelkel, N.F. 1992. The isolated perfused lung preparation as a research tool. In Treatise on Pulmonary Toxicology, Vol 1 (R.A. Parent, ed.) pp. 587‐613. CRC Press, Boca Raton, Fla.
   Donovan, J. and Brown, P. 1998. Anesthesia. Curr. Protoc. Immunol. 27:1.4.1‐1.4.5.
   Donovan, J. and Brown, P. 2006. Handling and restraint. Curr. Protoc. Immunol. 73:1.3.1‐1.3.6.
   Honda, A., Adams, S.R., Sawyer, C.L., Lev‐Ram, V., Tsien, R.Y., and Dostmann, W.R. 2001. Spatiotemporal dynamics of guanosine 3′,5′‐cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc. Natl. Acad. Sci. U.S.A. 98:2437‐2442.
   Jaryszak, E.M., Baumgartner, W.A.Jr., Peterson, A.J., Presson, R.G.Jr, Glenny, R.W., and Wagner, W.W.Jr. 2000. Selected contribution: Measuring the response time of pulmonary capillary recruitment to sudden flow changes. J. Appl. Physiol. 89:1233‐1238.
   Karpova, T.S., Baumann, C.T., He, L., Wu, X., Grammer, A., Lipsky, P., Hager, G.L., and McNally, J.G. 2003. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microsc. 209:56‐70.
   Kuebler, W.M., Ying, X., and Bhattacharya, J. 2002. Pressure‐induced endothelial Ca2+ oscillations in lung capillaries. Am. J. Physiol. Lung Cell. Mol. Physiol. 282:L917‐923.
   Ma, Z., Mi, Z., Wilson, A., Alber, S., Robbins, P.D., Watkins, S., Pitt, B., and Li, S. 2002a. Redirecting adenovirus to pulmonary endothelium by cationic liposomes. Gene Ther. 9:176‐182.
   Ma, Z., Zhang, J., Alber, S., Dileo, J., Negishi. Y., Stolz, D., Watkins, S., Huang, L., Pitt, B., and Li, S. 2002b. Lipid‐mediated delivery of oligonucleotide to pulmonary endothelium. Am. J. Respir. Cell Mol. Biol. 27:151‐159.
   Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882‐887.
   Pearce, L.L., Gandley, R.E., Han, W., Wasserloos, K., Stitt, M., Kanai, A.J., McLaughlin, M.K., Pitt, B.R., and Levitan, E.S. 2000. Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc. Natl. Acad. Sci. U.S.A. 97:477‐482.
   Piston, D.W. and Kremers, G.J. 2007. Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem Sci. 32:407‐414.
   St. Croix, C.M., Wasserloos, K.J., Dineley, K.E., Reynolds, I.J., Levitan, E.S., and Pitt, B.R. 2002. Nitric oxide‐induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am. J. Physiol. Lung Cell. Mol. Physiol. 282:L185‐192.
   St. Croix, C.M., Stitt, M.S., Leelavanichkul, K, Wasserloos, K.J., Pitt, B.R., and Watkins, S.C. 2004. Nitric oxide‐induced modification of protein thiolate clusters as determined by spectral fluorescence resonance energy transfer in live endothelial cells. Free Radic. Biol. Med. 37:785‐792.
   St. Croix, C.M., Pitt, B.R., and Watkins, S.C. 2005. The use of contemporary fluorescent imaging technologies in biomedical research. Med. Sci. 10:16‐29.
   Ting, A.Y., Kain, K.H., Klemke, R.L., and Tsien, R.Y. 2001. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. U.S.A. 98:15003‐15008.
   Tozawa, K., al‐Mehdi, A.B., Muzykantov, V., and Fisher, A.B. 1999. In situ imaging of intracellular calcium with ischemia in lung subpleural microvascular endothelial cells. Antioxid. Redox. Signal. 1:145‐154.
   Wagner, W.W.Jr., Latham, L.P., Hanson, W.L., Hofmeister, S.E., and Capen, R.L. 1986. Vertical gradient of pulmonary capillary transit times. J. Appl. Physiol. 61:1270‐1274.
   Ying, X., Minamiya, Y., Fu, C., and Bhattacharya, J. 1996. Ca2+ waves in lung capillary endothelium. Circ. Res. 79:898‐908.
   Zaccolo, M., Cesetti, T., Di Benedetto, G., Mongillo, M., Lissandron, V., Terrin, A., and Zamparo, I. 2005. Imaging the cAMP‐dependent signal transduction pathway. Biochem. Soc. Trans. 33:1323‐1326.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library