Simultaneous Optical Mapping of Intracellular Free Calcium and Action Potentials from Langendorff Perfused Hearts

Guy Salama1, Seong‐min Hwang1

1 University of Pittsburgh, Pittsburgh, Pennsylvania
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 12.17
DOI:  10.1002/0471142956.cy1217s49
Online Posting Date:  July, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The cardiac action potential (AP) controls the rise and fall of intracellular free Ca2+ (Cai), and thus the amplitude and kinetics of force generation. Besides excitation‐contraction coupling, the reverse process where Cai influences the AP through Cai‐dependent ionic currents has been implicated as the mechanism underlying QT alternans and cardiac arrhythmias in heart failure, ischemia/reperfusion, cardiac myopathy, myocardial infarction, congenital and drug‐induced long QT syndrome, and ventricular fibrillation. The development of dual optical mapping at high spatial and temporal resolution provides a powerful tool to investigate the role of Cai anomalies in eliciting cardiac arrhythmias. This unit describes experimental protocols to map APs and Cai transients from perfused hearts by labeling the heart with two fluorescent dyes, one to measure transmembrane potential (Vm), the other Cai transients. High spatial and temporal resolution is achieved by selecting Vm and Cai probes with the same excitation but different emission wavelengths, to avoid cross‐talk and mechanical components. Curr. Protoc. Cytom. 49:12.17.1‐12.17.32. © 2009 by John Wiley & Sons, Inc.

Keywords: action potential (AP); intracellular free Ca2+ (Cai); photodiode array (PDA); complementary metal oxide silicon (CMOS) camera; Voltage Sensitive Dye (VSD); Cai indicator; Rhod‐2AM; Pittsburgh I (PGH I); RH237

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Protocols
  • Selection of Vm and Cai Probes
  • Properties of RHOD‐2AM in Perfused Hearts
  • Dealing with Motion Artifacts
  • Kinetics of AP and Ca2+c Transients in Guinea Pig Hearts
  • Findings and Significance
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Allen, S.P., Stone, D., and McCormack, J.G. 1992. The loading of fura‐2 into mitochondria in the intact perfused rat heart and its use to estimate matrix Ca2+ under various conditions. J. Mol. Cell. Cardiol. 24:765‐773.
   Allingham, J.S., Smith, R., and Rayment, I. 2005. The structural basis of blebbistatin inhibition and specificity for myosin II. Nat. Struct. Mol. Biol. 12:378‐379.
   Babcock, D.F., Herrington, J., Goodwin, P.C., Park, Y.B., and Hille, B. 1997. Mitochondrial participation in the intracellular Ca2+ network. J. Cell. Biol. 136:833‐844.
   Baker, L.C., Wolk, R., Choi, B.R., Watkins, S., Plan, P., Shah, A., and Salama, G. 2004. Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin‐D on the electrophysiology of perfused mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 287:H1771‐H1779.
   Bassani, J.W., Bassani, R.A., and Bers, D.M. 1995. Calibration of indo‐1 and resting intracellular [Ca]i in intact rabbit cardiac myocytes. Biophys. J. 68:1453‐1460.
   Biermann, M., Rubart, M., Moreno, A., Wu, J., Josiah‐Durant, A., and Zipes, D.P. 1998. Differential effects of cytochalasin D and 2,3 butanedione monoxime on isometric twitch force and transmembrane action potential in isolated ventricular muscle: Implications for optical measurements of cardiac repolarization. J. Cardiovasc. Electrophysiol. 9:1348‐1357.
   Blatter, L.A. and Wier, W.G. 1990. Intracellular diffusion, binding, and compartmentalization of the fluorescent calcium indicators indo‐1 and fura‐2. Biophys. J. 58:1491‐1499.
   Brown, N.H., Dobrovolny, H.M., Gauthier, D.J., and Wolf, P.D. 2007. A fiber‐based ratiometric optical cardiac mapping channel using a diffraction grating and split detector. Biophys. J. 93:254‐263.
   Chacon, E., Ohata, H., Harper, I.S., Trollinger, D.R., Herman, B., and Lemasters, J.J. 1996. Mitochondrial free calcium transients during excitation‐contraction coupling in rabbit cardiac myocytes. FEBS Lett. 382:31‐36.
   Cheng, Y., Li, L., Nikolski, V., Wallick, D.W., and Efimov, I.R. 2004. Shock‐induced arrhythmogenesis is enhanced by 2,3‐butanedione monoxime compared with cytochalasin D. Am. J. Physiol. Heart Circ. Physiol. 286:H310‐H318.
   Choi, B.R. and Salama, G. 2000. Simultaneous maps of optical action potentials and calcium transients in guinea‐pig hearts: Mechanisms underlying concordant alternans. J. Physiol. 529:171‐188.
   Choi, B.R., Burton, F., and Salama, G. 2002. Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J. Physiol. 543:615‐631.
   Choi, B.R., Hatton, W.J., Hume, J.R., Liu, T., and Salama, G. 2006a. Low osmolarity transforms ventricular fibrillation from complex to highly organized, with a dominant high‐frequency source. Heart Rhythm 3:1210‐1220.
   Choi, B.R., Liu, T., and Salama, G. 2006b. Calcium transients modulate action potential repolarizations in ventricular fibrillation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:2264‐2267.
   Choi, B.R., Jang, W., and Salama, G. 2007. Spatially discordant voltage alternans cause wavebreaks in ventricular fibrillation. Heart Rhythm 4:1057‐1068.
   Chou, C.C., Nguyen, B.L., Tan, A.Y., Chang, P.C., Lee, H.L., Lin, F.C., Yeh, S.J., Fishbein, M.C., Lin, S.F., Wu, D., Wen, M.S., and Chen, P.S. 2008. Intracellular calcium dynamics and acetylcholine‐induced triggered activity in the pulmonary veins of dogs with pacing‐induced heart failure. Heart Rhythm 5:1170‐1177.
   Cohen, L. 1995. Optical monitoring of activity in the nervous system: A brief history. Tsitologiia 37:1136‐1141.
   Dedkova, E.N. and Blatter, L.A. 2008. Mitochondrial Ca2+ and the heart. Cell Calcium 44:77‐91.
   Del Nido, P.J., Glynn, P., Buenaventura, P., Salama, G., and Koretsky, A.P. 1998. Fluorescence measurement of calcium transients in perfused rabbit heart using rhod 2. Am. J. Physiol. 274:H728‐H741.
   Djurisic, M., Zochowski, M., Wachowiak, M., Falk, C.X., Cohen, L.B., and Zecevic, D. 2003. Optical monitoring of neural activity using voltage‐sensitive dyes. Methods Enzymol. 361:423‐451.
   Dou, Y., Arlock, P., and Arner, A. 2007. Blebbistatin specifically inhibits actin‐myosin interaction in mouse cardiac muscle. Am. J. Physiol. Cell. Physiol. 293:C1148‐C1153.
   Duchen, M.R., Leyssens, A., Mojet, M.H., and Peuchen, S. 1996. Properties of rhod 2 as an indicator of intra‐mitochondrial calcium (abstract). J. Physiol. 494:9P.
   Efimov, I.R., Huang, D.T., Rendt, J.M., and Salama, G. 1994. Optical mapping of repolarization and refractoriness from intact hearts. Circulation 90:1469‐1480.
   Efimov, I.R., Nikolski, V.P., and Salama, G. 2004. Optical imaging of the heart. Circ. Res. 95:21‐33.
   Entcheva, E. and Bien, H. 2006. Macroscopic optical mapping of excitation in cardiac cell networks with ultra‐high spatiotemporal resolution. Prog. Biophys. Mol. Biol. 92:232‐257.
   Fast, V.G. 2005. Simultaneous optical imaging of membrane potential and intracellular calcium. J. Electrocardiol. 38:107‐112.
   Fast, V.G. and Ideker, R.E. 2000. Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures. J. Cardiovasc. Electrophysiol. 11:547‐556.
   Fedorov, V.V., Lozinsky, I.T., Sosunov, E.A., Anyukhovsky, E.P., Rosen, M.R., Balke, C.W., and Efimov, I.R. 2007. Application of blebbistatin as an excitation‐contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm 4:619‐626.
   Fossum, E.R. 1993a. Active‐pixel sensors challenge CCDs. Laser Focus World 29:83‐87.
   Fossum, E.R. 1993b. Active pixel sensors: Are CCDs dinosaurs? Proc. SPIE 1900:2‐14.
   Furukawa, T., Yamane, T., Terai, T., Katayama, Y., and Hiraoka, M. 1996. Functional linkage of the cardiac ATP‐sensitive K+ channel to the actin cytoskeleton. Pflugers Arch. 431:504‐512.
   Gwathmey, J.K., Hajjar, R.J., and Solaro, R.J. 1991. Contractile deactivation and uncoupling of crossbridges: Effects of 2,3‐butanedione monoxime on mammalian myocardium. Circ. Res. 69:1280‐1292.
   Hajnoczky, G., Robb‐Gaspers, L.D., Seitz, M.B., and Thomas, A.P. 1995. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415‐424.
   Haworth, R.A. and Redon, D. 1998. Calibration of intracellular Ca transients of isolated adult heart cells labelled with fura‐2 by acetoxymethyl ester loading. Cell Calcium 24:263‐273.
   Hayashi, H., Kamanu, S.D., Ono, N., Kawase, A., Chou, C.C., Weiss, J.N., Karagueuzian, H.S., Lin, S.F., and Chen, P.S. 2008. Calcium transient dynamics and the mechanisms of ventricular vulnerability to single premature electrical stimulation in Langendorff‐perfused rabbit ventricles. Heart Rhythm 5:116‐123.
   Hove‐Madsen, L. and Bers, D.M. 1992. Indo‐1 binding to protein in permeabilized ventricular myocytes alters its spectral and Ca binding properties. Biophys. J. 63:89‐97.
   Inagaki, M., Hidaka, I., Aiba, T., Tatewaki, T., Sunagawa, K., and Sugimachi, M. 2004. High resolution optical mapping of cardiac action potentials in freely beating rabbit hearts. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5:3578‐3580.
   Jalife, J., Morley, G.E., Tallini, N.Y., and Vaidya, D. 1998. A fungal metabolite that eliminates motion artifacts. J. Cardiovasc. Electrophysiol. 9:1358‐1362.
   Jou, M.‐J. and Sheu, S.‐S. 1994. Mitochondrial Ca2+ oscillations in single living cells revealed by rhod‐2 and laser confocal microscopy. Biophys. J. 66:A94.
   Jou, M.J., Peng, T.I., and Sheu, S.S. 1996. Histamine induces oscillations of mitochondrial free Ca2+ concentration in single cultured rat brain astrocytes. J. Physiol. 497:299‐308.
   Katra, R.P. and Laurita, K.R. 2005. Cellular mechanism of calcium‐mediated triggered activity in the heart. Circ. Res. 96:535‐542.
   Katra, R.P., Pruvot, E., and Laurita, K.R. 2004. Intracellular calcium handling heterogeneities in intact guinea pig hearts. Am. J. Physiol. Heart Circ. Physiol. 286:H648‐H656.
   Kettlewell, S., Walker, N.L., Cobbe, S.M., Burton, F.L., and Smith, G.L. 2004. The electrophysiological and mechanical effects of 2,3‐butane‐dione monoxime and cytochalasin‐D in the Langendorff perfused rabbit heart. Exp. Physiol. 89:163‐172.
   Knisley, S.B., Justice, R.K., Kong, W., and Johnson, P.L. 2000. Ratiometry of transmembrane voltage‐sensitive fluorescent dye emission in hearts. Am. J. Physiol. Heart Circ. Physiol. 279:H1421‐H1433.
   Knisley, S.B. and Pollard, A.E. 2005. Use of translucent indium tin oxide to measure stimulatory effects of a passive conductor during field stimulation of rabbit hearts. Am. J. Physiol. Heart Circ. Physiol. 289:H1137‐H1146.
   Kong, W., Walcott, G.P., Smith, W.M., Johnson, P.L., and Knisley, S.B. 2003. Emission ratiometry for simultaneous calcium and action potential measurements with coloaded dyes in rabbit hearts: Reduction of motion and drift. J. Cardiovasc. Electrophysiol. 14:76‐82.
   Lakireddy, V., Baweja, P., Syed, A., Bub, G., Boutjdir, M., and El‐Sherif, N. 2005. Contrasting effects of ischemia on the kinetics of membrane voltage and intracellular calcium transient underlie electrical alternans. Am. J. Physiol. Heart Circ. Physiol. 288:H400‐H407.
   Lakireddy, V., Bub, G., Baweja, P, Syed, A, Boutjdir, M, and El‐Sherif, N. 2006. The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion. Heart Rhythm 3:58‐66.
   Lan, D.Z., Pollard, A.E., Knisley, S.B., and Fast, V.G. 2007. Optical mapping of V(m) and Ca(i)(2+) in a model of arrhythmias induced by local catecholamine application in patterned cell cultures. Pflugers Arch. 453:871‐877.
   Laude, B., de Martino, A., Drévillon, B., Benattar, L., and Schwartz, L. 2002. Full‐field optical coherence tomography with thermal light. App. Optics 41:6637‐6645.
   Laurita, K.R. and Rosenbaum, D.S. 2008. Mechanisms and potential therapeutic targets for ventricular arrhythmias associated with impaired cardiac calcium cycling. J. Mol. Cell. Cardiol. 44:31‐43.
   Laurita, K.R. and Singal, A. 2001. Mapping action potentials and calcium transients simultaneously from the intact heart. Am. J. Physiol. Heart Circ. Physiol. 280:H2053‐H2060.
   Li, D. and Nattel, S. 2007. Pharmacological elimination of motion artifacts during optical imaging of cardiac tissues: Is blebbistatin the answer? Heart Rhythm 4:627‐628.
   Li, T., Sperelakis, N., Teneick, R.E., and Solaro, R.J. 1985. Effects of diacetyl monoxime on cardiac excitation‐contraction coupling. J. Pharmacol. Exp. Ther. 232:688‐695.
   Liu, Y., Cabo, C., Salomonsz, R., Delmar, M., Davidenko, J., and Jalife, J. 1993. Effects of diacetyl monoxime on the electrical properties of sheep and guinea pig ventricular muscle. Cardiovasc. Res. 27:1991‐1997.
   Loew, L.M., Carrington, W., Tuft, R.A., and Fay, F.S. 1994. Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarizations. Proc. Natl. Acad. Sci. U.S.A. 91:12579‐12583.
   Loew, L.M., Tuft, R.A., Carrington, W., and Fay, F.S. 1993. Imaging in five dimensions: Time‐dependent membrane potentials in individual mitochondria. Biophys. J. 65:2396‐2407.
   London, B., Baker, L.C., Lee, J.S., Shusterman, V., Choi, B.R., Kubota, T., McTiernan, C.F., Feldman, A.M., and Salama, G. 2003. Calcium‐dependent arrhythmias in transgenic mice with heart failure. Am. J. Physiol. Heart Circ. Physiol. 284:H431‐H441.
   London, B., Baker, L.C., Petkova‐Kirova, P., Nerbonne, J.M., Choi, B.R., and Salama, G. 2007. Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT. J. Physiol. 578:115‐129.
   Lorell, B.H., Apstein, C.S., Cunningham, M.J., Schoen, F.J., Weinberg, E.O., Peeters, G.A., and Barry, W.H. 1990. Contribution of endothelial cells to calcium‐dependent fluorescence transients in rabbit hearts loaded with indo 1. Circ. Res. 67:415‐425.
   Loughrey, C.M., MacEachern, K.E., Cooper, J., and Smith, G.L. 2003. Measurement of the dissociation constant of Fluo‐3 for Ca2+ in isolated rabbit cardiomyocytes using Ca2+ wave characteristics. Cell Calcium 34:1‐9.
   Mazzanti, M., Assandri, R., Ferroni, A, and DiFrancesco, D. 1996. Cytoskeletal control of rectification and expression of four substates in cardiac inward rectifier K+ channels. FASEB J. 10:357‐361.
   McDonough, P.M. and Button, D.C. 1989. Measurement of cytoplasmic calcium concentration in cell suspensions: Correction for extracellular Fura‐2 through use of Mn2+ and probenecid. Cell Calcium 10:171‐180.
   Mendis, S., Kemeny, S.E., and Fossum, E.R. 1994. CMOS active pixel image sensor. IEEE Trans. Electron. Devices 41:452‐453.
   Mendis, S.K., Pain, B., Nixon, R.H., and Fossum, E.R. 1993. Low‐light‐level image sensor with on‐chip signal processing. Proc. SPIE 1952:23‐33.
   Minta, A., Kao, J.P., and Tsien, R.Y. 1989. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264:8171‐8178.
   Mitra, R. and Morad, M. 1985. A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am. J. Physiol. 249:H1056‐H1060.
   Mix, T.C.H., Drummond, R.M., Tuft, R.A., and Fay, F.S. 1994. Mitochondria in smooth muscle cells sequester Ca2+ following stimulation of cell contraction. Biophys. J. 66:A97.
   Miyata, H., Silverman, H.S., Sollott, S.J., Lakatta, E.G., Stern, M.D., and Hansford, R.G. 1991. Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am. J. Physiol. 261:H1123‐H1134.
   Prabhu, S.D. and Salama, G. 1990. Reactive disulfide compounds induce Ca2+ release from cardiac sarcoplasmic reticulum. Arch. Biochem. Biophys. 282:275‐283.
   Roell, W., Lewalter, T., Sasse, P., Tallini, Y.N., Choi, B.R., Breitbach, M., Doran, R., Becher, U.M., Hwang, S.M., Bostani, T., von Maltzahn, J., Hofmann, A., Reining, S., Eiberger, B., Gabris, B., Pfeifer, A., Welz, A., Willecke, K., Salama, G., Schrickel, J.W., Kotlikoff, M.I., and Fleischmann, B.K. 2007. Engraftment of connexin 43‐expressing cells prevents post‐infarct arrhythmia. Nature 450:819‐824.
   Rutter, G.A., Burnett, P., Rizzuto, R., Brini, M., Murgia, M., Pozzan, T., Tavaré, J.M., and Denton, R.M. 1996. Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: Significance for the regulation of pyruvate dehydrogenase activity. Proc. Natl. Acad. Sci. U.S.A. 93:5489‐5494.
   Saba, S., Mathier, M.A., Mehdi, H., Liu, T., Choi, B.R., London, B., and Salama, G. 2008. Dual‐dye optical mapping after myocardial infarction: Does the site of ventricular stimulation alter the properties of electrical propagation? J. Cardiovasc. Electrophysiol. 19:197‐202.
   Salama, G. 2006. Arrhythmia genesis: Aberrations of voltage or Ca2+ cycling? Heart Rhythm 31:67‐70.
   Salama, G. and Choi, B.R. 2007. Imaging ventricular fibrillation. J. Electrocardiol. 40:S56‐S61.
   Salama, G., Choi, B.R., Azour, G., Lavasani, M., Tumbev, V., Salzberg, B.M., Patrick, M.J., Ernst, L.A., and Waggoner, A.S. 2005. Properties of new, long‐wavelength, voltage‐sensitive dyes in the heart. J. Membr. Biol. 208:125‐140.
   Salama, G., Lombardi, R., and Elson, J. 1987. Maps of optical action potentials and NADH fluorescence in intact working hearts. Am. J. Physiol. 252:H384‐H394.
   Salama, G. and Morad, M. 1976. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science 191:485‐487.
   Scanlon, M., Williams, D.A., and Fay, F.S. 1987. A Ca2+‐insensitive form of fura‐2 associated with polymorphonuclear leukocytes: Assessment and accurate Ca2+ measurement. J. Biol. Chem. 262:6308‐6312.
   Schreur, J.H., Figueredo, V.M., Miyamae, M., Shames, D.M., Baker, A.J., and Camacho, S.A. 1996. Cytosolic and mitochondrial [Ca2+] in whole hearts using indo‐1 acetoxymethyl ester: Effects of high extracellular Ca2+. Biophys. J. 70:2571‐2580.
   Sellin, L.C. and McArdle, J.J. 1994. Multiple effects of 2,3‐butanedione monoxime. Pharmacol. Toxicol. 74:305‐313.
   Straight, A.F., Cheung, A., Limouze, J., Chen, I., Westwood, N.J., Sellers, J.R., and Mitchison, T.J. 2003. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299:1743‐1747.
   Tallini, Y.N., Brekke, J.F., Shui, B., Doran, R., Hwang, S.M., Nakai, J., Salama, G., Segal, S.S., and Kotlikoff, M.I. 2007. Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: Measurements in Cx40BAC GCaMP2 transgenic mice. Circ. Res. 101:1300‐1309.
   Tallini, Y.N., Ohkura, M., Choi, B.R., Ji, G., Imoto, K., Doran, R., Lee, J., Plan, P., Wilson, J., Xin, H.B., Sanbe, A., Gulick, J., Mathai, J., Robbins, J., Salama, G., Nakai, J., and Kotlikoff, M.I. 2006. Imaging cellular signals in the heart in vivo: Cardiac expression of the high‐signal Ca2+ indicator GCaMP2. Proc. Natl. Acad. Sci. U.S.A. 103:4753‐4758.
   Tsien, R.Y. 1980. New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry 19:2396‐2404.
   Undrovinas, A.I., Shander, G.S., and Makielski, J.C. 1995. Cytoskeleton modulates gating of voltage‐dependent sodium channel in heart. Am. J. Physiol. 269:H203‐H214.
   Uto, A., Arai, H., and Ogawa, Y. 1991. Reassessment of fura‐2 and the ratio method for determination of intracellular Ca2+ concentrations. Cell Calcium 12:29‐37.
   Wu, J., Biermann, M., Rubart, M., and Zipes, D.P. 1998. Cytochalasin D as excitation‐contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium. J. Cardiovasc. Electrophysiol. 9:1336‐1347.
   Xie, L.‐H., Chen, F., Karagueuzian, H.S., and Weiss, J.N. 2009. Oxidative stress‐induced afterdepolarizations and calmodulin kinase II signaling. Circ. Res. 104:79‐86.
   Zaidi, N.F., Lagenaur, C.F., Abramson, J.J., Pessah, I., and Salama, G. 1989. Reactive disulfides trigger Ca2+ release from sarcoplasmic reticulum via an oxidation reaction. J. Biol. Chem. 264:21725‐21736.
   Zecevic, D., Djurisic, M., Cohen, L.B., Antic, S., Wachowiak, M., Falk, C.X., and Zochowski, M.R. 2003. Imaging nervous system activity with voltage‐sensitive dyes. Curr. Protoc. Neurosci. 23:6.17.1‐6.17.29.
   Zimmermann, H. 2000. Integrated Silicon Optoelectronics. Springer‐Verlag, Berlin.
Internet Resources
  http://www.dalsa.com/markets/ccd_vs_cmos.asp
  Discussion of CCD versus CMOS on Dalsa Corporation Web site.
  http://www.olympusmicro.com/primer/techniques/fluorescence/fluorosources.html
  Abramowitz, M. and Davidson, M.W. Microscopy Primer: Light Sources.
  http://repairfaq.ece.drexel.edu/sam/laserdio.htm
  Goldwasser, S.M. 2008. Sam's Laser FAQ: Diode lasers.
  http://www.lumileds.com/pdfs/DS34.pdf
  Philips/Lumileds. 2004. LUXEON V LED Emitter Datasheet.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library