Photoactivation and Imaging of Optical Highlighter Fluorescent Proteins

George H. Patterson1

1 Biophotonics Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 12.23
DOI:  10.1002/0471142956.cy1223s57
Online Posting Date:  July, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


A major advance in the microscopic study of cells and tissues is the introduction of photoactivatable fluorescent proteins, which can specifically mark proteins of interest within a living cell. Fluorescent proteins are now available that allow a pool of molecules to be “turned on” by photoactivation. This unit discusses technical aspects for the general use of photoactivatable fluorescent proteins and introduces some specific applications in the concluding remarks. Curr. Protoc. Cytom. 57:12.23.1‐12.23.12. © 2011 by John Wiley & Sons, Inc.

Keywords: photoactivatable; fluorescent protein; microscopy

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Background
  • Requirements for Highlighting Fluorescent Proteins
  • Optimization Procedures
  • General Photoactivation Experiment
  • Uses of Optical Highlighter Fluorescent Proteins
  • Application of Optical Highlighter Fluorescent Proteins in Cytometry
  • Future Directions of Optical Highlighter Fluorescent Proteinsxsxs
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Adam, V., Lelimousin, M., Boehme, S., Desfonds, G., Nienhaus, K., Field, M.J., Wiedenmann, J., McSweeney, S., Nienhaus, G.U., and Bourgeois, D. 2008. Structural characterization of IrisFP, an optical highlighter undergoing multiple photo‐induced transformations. Proc. Natl. Acad. Sci. U.S.A. 105:18343‐18348.
   Ando, R., Hama, H., Yamamoto‐Hino, M., Mizuno, H., and Miyawaki, A. 2002. An optical marker based on the UV‐induced green‐to‐red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 99:12651‐12656.
   Ando, R., Flors, C., Mizuno, H., Hofkens, J., and Miyawaki, A. 2007. Highlighted generation of fluorescence signals using simultaneous two‐color irradiation on Dronpa mutants. Biophys. J. 92:L97‐L99.
   Ando, R., Mizuno, H., and Miyawaki, A. 2004. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370‐1373.
   Andresen, M., Stiel, A.C., Folling, J., Wenzel, D., Schonle, A., Egner, A., Eggeling, C., Hell, S.W., and Jakobs, S. 2008. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 26:1035‐1040.
   Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott‐Schwartz, J., and Hess, H.F. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642‐1645.
   Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y. 2002. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 99:7877‐7882.
   Cheezum, M.K., Walker, W.F., and Guilford, W.H. 2001. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81:2378‐2388.
   Chudakov, D.M., Belousov, V.V., Zaraisky, A.G., Novoselov, V.V., Staroverov, D.B., Zorov, D.B., Lukyanov, S., and Lukyanov, K.A. 2003. Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol. 21:191‐194.
   Chudakov, D.M., Verkhusha, V.V., Staroverov, D.B., Souslova, E.A., Lukyanov, S., and Lukyanov, K.A. 2004. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22:1435‐1439.
   Day, R.N. and Davidson, M.W. 2009. The fluorescent protein palette: Tools for cellular imaging. Chem. Soc. Rev. 38:2887‐2921.
   Day, R.N., Periasamy, A., and Schaufele, F. 2001. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25:4‐18.
   Demarco, I.A., Periasamy, A., Booker, C.F., and Day, R.N. 2006. Monitoring dynamic protein interactions with photoquenching FRET. Nat. Methods 3:519‐524.
   Ehrig, T., O'Kane, D.J., and Prendergast, F.G. 1995. Green‐fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett. 367:163‐166.
   Gurskaya, N.G., Verkhusha, V.V., Shcheglov, A.S., Staroverov, D.B., Chepurnykh, T.V., Fradkov, A.F., Lukyanov, S., and Lukyanov, K.A. 2006. Engineering of a monomeric green‐to‐red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24:461‐465.
   Habuchi, S., Tsutsui, H., Kochaniak, A.B., Miyawaki, A., and van Oijen, A.M. 2008. mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3:e3944.
   Heim, R., Prasher, D.C., and Tsien, R.Y. 1994. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 91:12501‐12504.
   Hofmann, M., Eggeling, C., Jakobs, S., and Hell, S.W. 2005. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U.S.A. 102:17565‐17569.
   Kim, P.K., Mullen, R.T., Schumann, U., and Lippincott‐Schwartz, J. 2006. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16‐dependent pathway from the ER. J. Cell Biol. 173:521‐532.
   Lippincott‐Schwartz, J. and Patterson, G.H. 2009. Photoactivatable fluorescent proteins for diffraction‐limited and super‐resolution imaging. Trends Cell Biol. 19:555‐565.
   Lukyanov, K.A., Fradkov, A.F., Gurskaya, N.G., Matz, M.V., Labas, Y.A., Savitsky, A.P., Markelov, M.L., Zaraisky, A.G., Zhao, X., Fang, Y., Tan, W., and Lukyanov, S.A. 2000. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275:25879‐25882.
   Lukyanov, K.A., Chudakov, D.M., Lukyanov, S., and Verkhusha, V.V. 2005. Innovation: Photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 6:885‐891.
   McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W., and Looger, L.L. 2009. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6:131‐133.
   Merzlyak, E.M., Goedhart, J., Shcherbo, D., Bulina, M.E., Shcheglov, A.S., Fradkov, A.F., Gaintzeva, A., Lukyanov, K.A., Lukyanov, S., Gadella, T.W., and Chudakov, D.M. 2007. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 4:555‐557.
   Morozova, K.S., Piatkevich, K.D., Gould, T.J., Zhang, J., Bewersdorf, J., and Verkhusha, V.V. 2010. Far‐red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 99:L13‐L15.
   Patterson, G.H. and Lippincott‐Schwartz, J. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873‐1877.
   Post, J.N., Lidke, K.A., Rieger, B., and Arndt‐Jovin, D.J. 2005. One‐ and two‐photon photoactivation of a paGFP‐fusion protein in live Drosophila embryos. FEBS Lett. 579:325‐330.
   Schneider, M., Barozzi, S., Testa, I., Faretta, M., and Diaspro, A. 2005. Two‐photon activation and excitation properties of PA‐GFP in the 720‐920‐nm region. Biophys. J. 89:1346‐1352.
   Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E., and Tsien, R.Y. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22:1567‐1572.
   Stiel, A.C., Trowitzsch, S., Weber, G., Andresen, M., Eggeling, C., Hell, S.W., Jakobs, S., and Wahl, M.C. 2007. 1.8 A bright‐state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402:35‐42.
   Stiel, A.C., Andresen, M., Bock, H., Hilbert, M., Schilde, J., Schonle, A., Eggeling, C., Egner, A., Hell, S.W., and Jakobs, S. 2008. Generation of monomeric reversibly switchable red fluorescent proteins for far‐field fluorescence nanoscopy. Biophys. J. 95:2989‐2997.
   Subach, F.V., Patterson, G.H., Manley, S., Gillette, J.M., Lippincott‐Schwartz, J., and Verkhusha, V.V. 2009. Photoactivatable mCherry for high‐resolution two‐color fluorescence microscopy. Nat. Methods 6:153‐159.
   Subach, F.V., Patterson, G.H., Renz, M., Lippincott‐Schwartz, J., and Verkhusha, V.V. 2010. Bright monomeric photoactivatable red fluorescent protein for two‐color super‐resolution sptPALM of live cells. J. Am. Chem. Soc. 132:6481‐6491.
   Thompson, R.E., Larson, D.R., and Webb, W.W. 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775‐2783.
   Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N., and Miyawaki, A. 2005. Semi‐rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 6:233‐238.
   Verkhusha, V.V. and Sorkin, A. 2005. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem. Biol. 12:279‐285.
   Victora, G.D., Schwickert, T.A., Fooksman, D.R., Kamphorst, A.O., Meyer‐Hermann, M., Dustin, M.L., and Nussenzweig, M.C. 2010. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:592‐605.
   Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Rocker, C., Salih, A., Spindler, K.D., and Nienhaus, G.U. 2004. EosFP, a fluorescent marker protein with UV‐inducible green‐to‐red fluorescence conversion. Proc. Natl. Acad. Sci. U.S.A. 101:15905‐15910.
   Yokoe, H. and Meyer, T. 1996. Spatial dynamics of GFP‐tagged proteins investigated by local fluorescence enhancement. Nat. Biotechnol. 14:1252‐1256.
PDF or HTML at Wiley Online Library