A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and Structures, Part II: Reagents for Non‐Vesicular Organelles

Jason A. Kilgore1, Nick J. Dolman1, Michael W. Davidson2

1 Life Technologies, Eugene, Oregon, 2 Florida State University, Tallahassee, Florida
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 12.31
DOI:  10.1002/0471142956.cy1231s66
Online Posting Date:  October, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


A wide range of fluorescent dyes and reagents exist for labeling organelles in live and fixed cells. Choosing between them can sometimes be confusing, and optimization for many of them can be challenging. Presented here is a discussion on the commercially‐available reagents that have shown the most promise for each organelle of interest, including endoplasmic reticulum/nuclear membrane, Golgi apparatus, mitochondria, nucleoli, and nuclei, with an emphasis on localization of these structures for microscopy. Included is a featured reagent for each structure with a recommended protocol, troubleshooting guide, and example image. Curr. Protoc. Cytom. 66:12.31.1‐12.34.24. © 2013 by John Wiley & Sons, Inc.

Keywords: labeling; imaging; fluorescent dyes; organelles; cell biology

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Endoplasmic Reticulum and Nuclear Membrane Labeling Using ER‐Tracker Reagents
  • Basic Protocol 2: Labeling Golgi Apparatus Using Dye‐Labeled Ceramides
  • Basic Protocol 3: Labeling Mitochondria Using MitoTracker Red CMXRos
  • Basic Protocol 4: Labeling Nucleoli Using Syto RNASelect Green
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Endoplasmic Reticulum and Nuclear Membrane Labeling Using ER‐Tracker Reagents

  • Cell line/type of choice
  • Appropriate culture medium, phenol red–free
  • ER‐Tracker reagent (see recipe)
  • Hank's balanced salt solution (HBSS; see recipe) is preferred, but any physiological buffer or phenol red–free medium will work
  • 4% formaldehyde (made from methanol‐free, EM‐grade 16% formaldehyde) in DPBS (see recipe) or culture medium (optional)
  • 0.2% Triton X‐100 in PBS (Life Technologies, cat. no. 10010)
  • ProLong Gold antifade mounting medium (Life Technologies; optional)

Basic Protocol 2: Labeling Golgi Apparatus Using Dye‐Labeled Ceramides

  • Cell line/type of choice
  • Appropriate culture medium, phenol red–free
  • Hanks’ balanced salt solution (HBSS, see recipe; DPBS, see recipe, may also be used)
  • Fluorescent ceramide analog conjugated to BSA (see recipe)
  • Glass‐bottom Petri dishes, coverslips, or multi‐well plates appropriate for cell line
  • Fluorescence microscope with filter sets for NBD, BODIPY Fl, or BODIPY TR

Basic Protocol 3: Labeling Mitochondria Using MitoTracker Red CMXRos

  • Cell line/type of choice
  • Appropriate culture medium, phenol red–free
  • Test compounds (or other test conditions) p‐(trifluoromethoxy)phenylhydrazone (FCCP; Sigma‐Aldrich, cat. no. F2920), carbonyl cyanide m‐chlorophenyl hydrazone (CCCP; Sigma‐Aldrich, cat. no. C2759), or comparable protonophore MitoTracker Red CMXRos (see recipe)
  • 4% formaldehyde (made from methanol‐free, EM‐grade 16% formaldehyde) in HBSS (see recipe)
  • 50 mM phosphate‐buffered saline (PBS; Life Technologies, cat. no. 10010)
  • 0.2% Triton X‐100 in HBSS
  • Fluorescence microscope with TRITC or Alexa Fluor 568 filter set

Basic Protocol 4: Labeling Nucleoli Using Syto RNASelect Green

  • Cell line/type of choice
  • 100% methanol, ice‐cold (optional)
  • Appropriate cell culture medium or suitable live‐cell buffer, phenol red‐free
  • 500 nM SYTO RNASelect Green working solution (see recipe)
  • Curing mounting medium, e.g., ProLong Gold (Life Technologies)
  • Fluorescence microscope with FITC filter set
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Addabbo, F., Ratliff, B., Park, H.‐C., Kuo, M.‐C., Ungvari, Z., Ciszar, A., Krasnikof, B., Sodhi, K., Zhang, F., Nasjletti, A., and Goligorsky, M.S. 2009. The Krebs Cycle and mitochondrial mass are early victims of endothelial dysfunction. Am. J. Pathol. 174:34‐43.
  Agnello, M., Morici, G., and Rinaldi, A.M. 2008. A method for measuring mitochondrial mass and activity. Cytotechnology 56:145‐149.
  Bergmann, J.E. and Fusco, P.J. 1990. The G protein of vesicular stomatitis virus has free access into and egress from the smooth endoplasmic reticulum of UT‐1 cells. J. Cell Biol. 110:625‐635.
  Berridge, M.J., Bootman, M.D., and Roderick, H.L. 2003. Calcium signaling: Dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4:517‐529.
  Boix‐Chornet, M., Fraga, M.F., Villar‐Garea, A., Caballero, R., Espada, J., Nuñez, A., Casado, J., Largo, C., Casal, J.I., Cigudosa, J.C., Franco, L., Esteller, M., and Ballestar, E. 2006. Release of hypoacetylated and trimethylated histone H4 is an epigenetic marker of early apoptosis. J. Biol. Chem. 281:13540‐13547.
  Buckman, J.F., Hernandez, H., Kress, G.J., Votyakova, T.V., Pal, S., and Reynolds, I.J. 2001. MitoTracker labeling in primary neuronal and astrocytic cultures: Influence of mitochondrial membrane potential and oxidants. J. Neurosci. Methods 104:165‐176.
  Chae, K.‐S., Oh, K.‐S., and Dryer, S.E. 2005. Growth factors mobilize multiple pools of KCa channels in developing parasympathetic neurons: Role in ADP‐ribosylation factors and related proteins. J. Neurophysiol. 94:1597‐1605.
  Chalmers, S. and McCarron, J.G. 2008. The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle. J. Cell Sci. 121:75‐85.
  Chazotte, B. 2008. Labeling the Golgi apparatus with BODIPY‐FL‐Ceramide (C5‐DMB‐Ceramide) for imaging. CSH Protoc. Feb. 1;2008:pdb.prot4931.
  Chen, M., Yang, Z., Wu, R., and Nadler, J.L. 2002. Lisofylline, a novel antiinflammatory agent, protects pancreatic β‐cells from proinflammatory cytokine damage by promoting mitochondrial metabolism. Endocrinology 143:2341‐2348.
  Christensen, P., Stenvang, J.P., and Godfrey, W.L. 2004. A flow cytometric method for rapid determination of sperm concentration and viability in mammalian and avian semen. J. Androl. 25:255‐264.
  Cossarizza, A., Ceccarelli, D., and Masini, A. 1996. Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorometric analysis at the single organelle level. Exp. Cell Res. 222:84‐94.
  De Matteis, M., Godi, A., and Corda, D. 2002. Phosphoinositides and the Golgi complex. Curr. Opin. Cell Biol. 14:434‐447.
  Deng, Y., Bennink, J.R., Kang, H.C., Haugland, R.P., and Yewdell, J.W. 1995. Fluorescent conjugates of brefeldin A selectively stain the endoplasmic reticulum and Golgi complex of living cells. J. Histochem. Cytochem. 43:907‐915.
  Di Lisa, F., Blank, P.S., Colonna, R., Gambassi, G., Silverman, H.S., Stern, M.D., and Hansford, R.G. 1995. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J. Physiol. 486:1‐13.
  Dolman, N.J., Gerasimenko, J.V., Gerasimenko, O.V., Voronina, S.G., Petersen, O.H., and Tepikin, A.V. 2005. Stable Golgi‐mitochondria complexes and formation of Golgi Calcium gradients in pancreatic acinar cells. J. Biol. Chem. 280:15794‐15799.
  Donaldson, J.G. and Lippincott‐Schwartz, J. 2000. Sorting and signaling at the Golgi complex. Cell 101:693‐696.
  Dykens, J.A. and Will, Y. 2007. The significance of mitochondrial toxicity testing in drug development. Drug Discov. Today 12:777‐785.
  Ehrenberg, B., Montana, V., Wei, M.‐D., Wuskell, J.P., and Loew, L.M. 1988. Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys. J. 53:785‐794.
  Erbrich, U., Septinus, M., Naujok, A., and Zimmermann, H.W. 1984. Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells. 2. Comparison of staining of living and fixed HeLa‐cells with NAO and DPPAO. Histochemistry 80:385‐388.
  Farkas, D.L., Wei, M.‐d., Febbroriella, P., Carson, J.H., and Loew, L.M. 1989. Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys. J. 56:1053‐1069.
  Farquhar, M.G. and Palade, G.E. 1998. The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. 8:2‐10.
  Fried, J., Doblin, J., Takamoto, S., Perez, A., Hansen, H., and Clarkson, B. 1982. Effects of Hoechst 33342 on survival and growth of two tumor cell lines and on hematopoietically normal bone marrow cells. Cytometry 3:42‐47.
  Gallo, L.I., Lagadari, M., Piwien‐Pilipuk, G., and Galigniana, M.D. 2011. The 90‐dDa heat‐shock protein (Hsp90)‐binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress. J. Biol. Chem. 286:30152‐30160.
  Geng, X., Li, L., Watkins, S., Robbins, P.D., and Drain, P. 2003. The insulin secretory granule is the major site of K(ATP) channels of the endocrine pancreas. Diabetes 52:767‐776.
  Gerasimenko, O.V., Gerasimenko, J.V., Rizzuto, R.R., Treiman, M., Tepikin, A.V., and Petersen, O.H. 2002. The distribution of the endoplasmic reticulum in living pancreatic acinar cells. Cell Calcium 32:261‐268.
  Gilmore, K. and Wilson, M. 1999. The use of chloromethyl‐X‐rosamine (MitoTracker Red) to measure loss of mitochondrial membrane potential in apoptotic cells is incompatible with cell fixation. Cytometry 36:355‐358.
  Guasch, R.M., Guerri, C., and O'Connor, J.E. 1993. Flow cytometric analysis of concanavalin A binding to isolated Golgi fractions from rat liver. Exp. Cell Res. 207:136‐141.
  Hambrock, A., Löffler‐Walz, C., and Quast, U. 2002. Glibenclamide binding to sulphonylurea receptor subtypes: Dependence on adenine nucleotides. Br. J. Pharmacol. 136:995‐1004.
  Hanson, G.T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R.A., Tsien, R.Y., and Remington, S.J. 2004. Investigating mitochondrial redox potential with redox‐sensitive green fluorescent protein indicators. J. Biol. Chem. 279:13044‐13053.
  Johnson, L.V., Walsh, M.L., and Chen, L.B. 1980. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. U.S.A. 77:990‐994.
  Johnson, L.V., Walsh, M.L., Bockus, B.J., and Chen, L.B. 1981. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell Biol. 88:526‐535.
  Jones, L.J., Gray, M., Yue, S.T., Haugland, R.P., and Singer, V.L. 2001. Sensitive determination of cell number using the CyQUANT cell proliferation assay. J. Immunol. Methods 254:85‐98.
  Kashimoto, S., Furuya, A., Kume, M., Yamaguchi, T., and Kumazawa, T. 2001. Effects of glibenclamide on hydroxyl radical formation in the postischaemic reperfused heart with or without inhalation anaesthetics. Eur. J. Anaesthesiol. 18:811‐815.
  Keij, J.F., Bell‐Prince, C., and Steinkamp, J.A. 2000. Staining of mitochondrial membranes with 10‐nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Cytometry 39:203‐210.
  Keil, V.C., Funke, F., Zeug, A., Schild, D., and Müller, M. 2011. Ratiometric high‐resolution imaging of JC‐1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflugers Arch. 462:693‐708.
  Kooy, J., Underwood, J.R., and Gleeson, P.A. 1991. Identification of components of the endoplasmic reticulum and Golgi complex by murine autoreactive monoclonal antibodies. Immunology 72:418‐425.
  Kost, T.A. and Condreay, J.P 1999. Recombinant baculoviruses as expression vectors for insect and mammalian cells. Curr. Opin. Biotech. 10:428‐433.
  Kulkarni, G.V., Lee, W., Seth, A., and McCulloch, C.A. 1998. Role of mitochondrial membrane potential in concanavalin A‐induced apoptosis in human fibroblasts. Exp. Cell Res. 245:170‐178.
  Larsen, T.A., Goodsell, D.S., Cascio, D., Grzeskowiak, K., and Dickerson, R.E. 1989. The structure of DAPI bound to DNA. J. Biomol. Struct. Dyn. 7:477‐491.
  Lee‐MacAry, A.E., Ross, E.L., Davies, D., Laylor, R., Honeychurch, J., Glennie, M.J., Snary, D., and Wilkinson, R.W. 2001. Development of a novel flow cytometric cell‐mediated cytotoxicity assay using the fluorophores PKH‐26 and TO‐PRO‐3 iodide. J. Immunol. Methods 252:83‐92.
  Lepple‐Wienhues, A., Belka, C., Laun, T., Jekle, A., Walter, B., Wieland, U., Welz, M., Heil, L., Kun, J., Busch, G., Weller, M., Bamberg, M., Gulbins, E., and Lang, F. 1999. Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc. Natl. Acad. Sci. U.S.A. 96:13795‐13800.
  Lippincott‐Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L., and Klausner, R.D. 1991. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67:601‐616.
  Lipsky, N.G. and Pagano, R.E. 1985. A vital stain for the Golgi apparatus. Science 228:745‐747.
  Liu, T.‐T., Kishimoto, T., Hatakeyama, H., Nemoto, T., Takahashi, N., and Kasai, H. 2005. Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ (two‐photon extracellular polar‐tracer imaging‐based quantification) analysis. J. Physiol. 568:917‐929.
  Macgregor, A., Yamasaki, M., Rakovic, S., Sanders, L., Parkesh, R., Churchill, G.C., Galione, A., and Terrar, D.A. 2007. NAADP controls cross‐talk between distinct Ca2+ stores in the heart. J. Biol. Chem. 282:15302‐15311.
  Macho, A., Decaudin, D., Castedo, M., Hirsch, T., Susin, S.A., Zamzami, N., and Kroemer, G. 1996. Chloromethyl‐X‐Rosamine is an aldehyde‐fixable potential‐sensitive fluorochrome for the detection of early apoptosis. Cytometry 25:333‐340.
  Maftah, A., Petit, J.M., Ratinaud, M.H., and Julien, R. 1989. 10‐N nonyl‐acridine orange: A fluorescent probe which stains mitochondria independently of their energetic state. Biochem. Biophys. Res. Commun. 164:185‐190.
  Majak, K., Kowiánski, P., Morýs, J., Spodnik, J., Karwacki, Z., and Wisniewski, H.M. 2000. The limbic zone of the rabbit and rat claustrum: A study of the claustrocingulate connections based on the retrograde axonal transport of fluorescent tracers. Anat. Embryol. 201:15‐25.
  Marcus, M., Nattenberg, A., Goitein, R., Nielsén, K., and Gropp, A. 1979. Inhibition of condensation of human Y chromosome by the fluorochrome Hoechst 33258 in a mouse‐human cell hybrid. Hum. Genet. 46:193‐198.
  Miller, P.M., Folkmann, A.W., Maia, A.R.R., Efimova, N., Efimov, A., and Kaverina, I. 2009. Golgi‐derived CLASP‐dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat. Cell Biol. 11:1069‐1080.
  Mukhopadhyay, P., Rajesh, M., Haskó, G., Hawkins, B.J., Madesh, M., and Pacher, P. 2007. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat. Protoc. 2:2295‐2301.
  Nicholls, D.G. 2004. Mitochondrial membrane potential and aging. Aging Cell 3:35‐40.
  O'Brien, P.J., Irwin, W., Diaz, D., Howard‐Cofield, E., Krejsa, C.M., Slaughter, M.R., Gao, B., Kaludercic, N., Angeline, A., Bernardi, P., Brain, P., and Hougham, C. 2006. High concordance of drug‐induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell‐based model using high content screening. Arch. Toxicol. 80:580‐604.
  Ono, A., Orenstein, J.M., and Freed, E.O. 2000. Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J. Virol. 74:2855‐2866.
  Pagano, R.E. and Martin, O.C. 1998. Use of fluorescent analogs of ceramide to study the Golgi apparatus of animal cells. In Cell Biology: A Laboratory Handbook, 2nd Edition, Vol. 2 (J.E. Celis, ed.) pp. 507‐512. Academic Press, San Diego, Calif.
  Pagano, R.E., Martin, O.C., Kang, H.C., and Haugland, R.P. 1991. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: Accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113:1267‐1279.
  Pederson, T. 1998. The plurifunctional nucleolus. Nucleic Acids Res. 26:3871‐3876.
  Pederson, T. 2011. The nucleolus. Cold Spring Harb. Perspect. Biol. 2011:3a00638.
  Pendergrass, W., Wolf, N., and Poot, M. 2004. Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61:162‐169.
  Poot, M., Zhang, Y.Z., Krämer, J.A., Wells, K.S., Jones, L.J., Hanzel, D.K., Lugade, A.G., Singer, V.L., and Haugland, R.P. 1996. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 44:1363‐1372.
  Presley, J.F., Cole, N.B., Schroer, T.R., Hirschberg, K., Zaal, K.J.M., and Lippincott‐Schwartz, J. 1997. ER‐to‐Golgi transport visualized in living cells. Nature 389:81‐85.
  Ratinaud, M.H., Leprat, P., and Julien, R. 1988. In situ flow cytometric analysis of nonyl acridine orange stained mitochondria from splenocytes. Cytometry 9:206‐212.
  Reers, M., Smith, T.W., and Chen, L.B. 1991. J‐aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480‐4486.
  Rizzuto, R., Pinton P., Carrington, W., Fay, F.S., Fogarty K.E, Lifshitz, L.M., Tuft, R.A., and Pozzan, T. 2008. Close contacts with the endoplasmic reticulum as a determinant of mitochondrial Ca2+ responses. Science 280:1763‐1766.
  Rocchi, A., Di Castro, M., and Prantera, G. 1979. Effects of DAPI on human leukocytes in vitro. Cytogenet. Cell Genet. 23:250‐254.
  Roth, J. 1983. Application of lectin‐gold complexes for electron microscopic localization of glycoconjugates on thin sections. J. Histochem. Cytochem. 31:987‐999.
  Roth, M.G. 2004. Phosphinositides in constitutive membrane traffic. Physiol. Rev. 84:699‐730.
  Saftig, P. and Klumperman, J. 2009. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 10:623‐635.
  Salvioli, S., Ardizzoni, A., Franceschi, C., and Cossarizza, A. 1997. JC‐1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411:77‐82.
  Schmid, I., Uittenbogaart, C., and Jamieson, B.D. 2007. Live‐cell assay for detection of apoptosis by dual‐laser flow cytometry using Hoechst 33342 and 7‐amino‐actinomycin D. Nat. Protoc. 2:187‐190.
  Sciaky, N., Presley, J., Smith, C., Zaal, K.J.M., Cole, N., Moreira, J.E., Terasaki, M., Siggia, E., and Lippincott‐Schwartz, J. 1997. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139:1137‐1155.
  Septinus, M., Berthold, T., Naujok, A., and Zimmermann, H.W. 1985. Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells. 3. Specific accumulation of the fluorescent dyeNAO on the mitochondrial membranes in HeLa cells by hydrophobic interaction. Depression of respiratory activity, changes in the ultrastructure of mitochondria due to NAO. Increase of fluorescence in vital stained mitochondria in situ by irradiation. Histochemistry 82:51‐66.
  Smiley, S.T., Reers, M., Mottola‐Hartshorn, C., Lin, M., Chen, A., Smith, T.W., Steele, G.D. Jr., and Chen, L.B. 1991. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a Jaggregate‐forming lipophilic cation JC‐1. Proc. Natl. Acad. Sci. U.S.A. 88:3671‐3675.
  Soltys, B.J. and Gupta, R.S. 1992. Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules—a quadruple fluorescence labeling study. Biochem. Cell Biol. 70:1174‐1186.
  Stepanova, N.G., Nikitin, S.M., Valeeva, F.S., Kartasheva, O.N., Zhuze, A.L., and Zelenin, A.V. 1985. Application of 7‐amino‐actinomycin D for the fluorescence microscopical analysis of DNA in cells and polytene chromosomes. Histochem. J. 17:131‐142.
  Szydlowska, K., Zawadzka, M., and Kaminska, B. 2006. Neuroprotectant FK506 inhibits glutamate‐induced apoptosis of astrocytes in vitro and in vivo. J. Neurochem. 99:965‐975.
  Terasaki, M. and Reese, T.S. 1992. Characterization of endoplasmic reticulum by co‐localization of BiP and dicarboxyanine dyes. J. Cell Sci. 101:315‐322.
  Terasaki, M., Song, J., Wong, J.R., Weiss, M.J., and Chen, L.B. 1984. Localization of endoplasmic reticulum in living and glutaraldehyde‐fixed cells with fluorescent dye. Cell 38:101‐108.
  Virtanen, I., Ekblom, P., and Laurila, P. 1980. Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells. J. Cell Biol. 85:429‐434.
  Zemans, R.L., Briones, N., Young, S.K., Malcolm, K.C., Refaeli, Y., Downey, G.P., and Worthen, G.S. 2009. A novel method for long term bone marrow culture and genetic modification of murine neutrophils via retroviral transduction. J. Immunol. Methods 340:102‐115.
  Zünkler, B.J., Wos‐Maganga, M., and Panten, U. 2004. Fluorescence microscopy studies with a fluorescent glibenclamide derivative, a high‐affinity blocker of pancreatic beta‐cell ATP‐sensitive K+ currents. Biochem. Pharmacol. 67:1437‐1444.
PDF or HTML at Wiley Online Library