Correlative Fluorescence and Electron Microscopy

Randall T. Schirra1, Peijun Zhang1

1 Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 12.36
DOI:  10.1002/0471142956.cy1236s70
Online Posting Date:  October, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associated with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology has led to rapid improvement in the protocols and has ushered in a new generation of instruments to reach the next level of correlation—integration. Curr. Protoc. Cytom. 70:12.36.1‐12.36.10. © 2014 by John Wiley & Sons, Inc.

Keywords: electron microscopy; fluorescence; light microscopy; correlative; cell biology; imaging; cryoEM; immunolabel; tomography; integrated microscope

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Rationale
  • Methods
  • Remarks on the Future of CFEM
  • Acknowledgements
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Abu‐Lail, N.I., Ohashi, T., Clark, R.L., Erickson, H.P., and Zauscher, S. 2006. Understanding the elasticity of fibronectin fibrils: Unfolding strengths of FN‐III and GFP domains measured by single molecule force spectroscopy. Matrix Biol. 25:175‐184.
  Agronskaia, A.V., Valentijn, J.A., van Driel, L.F., Schneijdenberg, C.T.W.M., Humbel, B.M., van Bergen, E.N., Henegouwen, P.M., Verkleij, A.J., Koster, A.J., and Gerritsen, H.C. 2008. Integrated fluorescence and transmission electron microscopy. J. Struct. Biol. 164:183‐189.
  Alivisatos, A.P., Gu, W., and Larabell, C. 2005. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7:55‐76.
  Armbruster, B.L., Carlemalm, E., Chiovetti, R., Garavito, R.M., Hobot, J.A., Kellenberger, E., and Villiger, W. 1982. Specimen preparation for electron microscopy using low temperature embedding resins. J. Microsc. 126:77‐85.
  Armbruster, B.L., Garavito, R.M., and Kellenberger, E. 1983. Dehydration and embedding temperatures affect the antigenic specificity of tubulin and immunolabeling by the protein A‐colloidal gold technique. J. Histochem. Cytochem. 31:1380‐1384.
  Boassa, D., Berlanga, M.L., Yang, M.A., Terada, M., Hu, J., Bushong, E.A., Hwang, M., Masliah, E., George, J.M., and Ellisman, M.H. 2013. Mapping the subcellular distribution of α‐synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: Implications for Parkinson's disease pathogenesis. J. Neurosci. 33:2605‐2615.
  Bushong, E.A., Martone, M.E., Jones, Y.Z., and Ellisman, M.H. 2002. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22:183‐192.
  Carlemalm, E., Villiger, W., Hobot, J.A., Acetarin, J.‐D., and Kellenberger, E. 1985. Low temperature embedding with Lowicryl resins: Two new formulations and some applications. J. Microsc. 140:55‐63.
  Clegg, R.M. 2009. Förster resonance energy transfer—FRET: What is it, why do it, and how it's done. FRET FLIM Techn. 1:1‐57.
  Cotte, Y., Toy, F., Jourdain, P., Pavillon, N., Boss, D., Magistretti, P., Marquet, P., and Depeursinge, C. 2013. Marker‐free phase nanoscopy. Nat. Photonics 7:113‐117.
  Egerton, R.F. 2005. The scanning electron microscope. In Physical Principles of Electron Microscopy. pp. 125‐128. Springer, New York.
  Ellisman, M.H., Deerinck, T.J., Shu, X., and Sosinsky, G.E. 2012. Picking faces out of a crowd: Genetic labels for identification of proteins in correlated light and electron microscopy imaging. Methods Cell Biol. 111:139‐153.
  Faas, F.G.A., Bárcena, M., Agronskaia, A.V., Gerritsen, H.C., Moscicka, K.B., Diebolder, C.A., van Driel, L.F., Limpens, R.W.A.L., Bos, E., and Ravelli, R.B.G. 2013. Localization of fluorescently labeled structures in frozen‐hydrated samples using integrated light electron microscopy. J. Struct. Biol. 181:283‐290.
  Fabig, G., Kretschmar, S., Weiche, S., Eberle, D., Ader, M., and Kurth, T. 2012. 5 Labeling of ultrathin resin sections for correlative light and electron microscopy. Methods Cell Biol. 111:75‐91.
  Fitzpatrick, A.W.P., Lorenz, U.J., Vanacore, G.M., and Zewail, A.H. 2013. 4D cryo‐electron microscopy of proteins. J. Am. Chem. Soc. 135:19123‐19126.
  Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky, G.E., Tsien, R.Y., and Ellisman, M.H. 2002. Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503‐507.
  Gaietta, G.M., Deerinck, T.J., and Ellisman, M.H. 2011. Correlated live cell light and electron microscopy using tetracysteine tags and biarsenicals. Cold Spring Harb. Protoc. 2001:pdb‐prot5548.
  Giepmans, B.N.G. 2006. The fluorescent toolbox for assessing protein location and function. Science 312:217‐224.
  Giepmans, B.G. 2008. Bridging fluorescence microscopy and electron microscopy. Histochem. Cell Biol. 130:211‐217.
  Grabenbauer, M., Geerts, W.J., Fernadez‐Rodriguez, J., Hoenger, A., Koster, A.J., and Nilsson, T. 2005. Correlative microscopy and electron tomography of GFP through photooxidation. Nat. Methods 2:857‐862.
  Gustafsson, M.G. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198:82‐87.
  Hell, S.W. and Wichmann, J. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated‐emission‐depletion fluorescence microscopy. Optics Lett. 19:780‐782.
  Hess, S.T., Girirajan, T.P., and Mason, M.D. 2006. Ultra‐high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258‐4272.
  Hoenger, A. 2014. High‐resolution cryo‐electron microscopy on macromolecular complexes and cell organelles. Protoplasma 251:217‐227.
  Hughes, L., Hawes, C., Monteith, S., and Vaughan, S. 2014. Serial block face scanning electron microscopy—the future of cell ultrastructure imaging. Protoplasma 251:395‐401.
  Idrissi, F.‐Z. and Geli, M.I. 2013. Zooming in on the molecular mechanisms of endocytic budding by time‐resolved electron microscopy. Cell. Mol. Life Sci. 1:8211‐8217.
  Juette, M.F., Gould, T.J., Lessard, M.D., Mlodzianoski, M.J., Nagpure, B.S., Bennett, B.T., Hess, S.T., and Bewersdorf, J. 2008. Three‐dimensional sub–100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5:527‐529.
  Jun, S., Ke, D., Debiec, K., Zhao, G., Meng, X., Ambrose, Z., Gibson, G.A., Watkins, S.C., and Zhang, P. 2011. Direct visualization of HIV‐1 with correlative live‐cell microscopy and cryo‐electron tomography. Structure 19:1573‐1581.
  Jun, S., Zhao, G., Ning, J., Gibson, G.A., Watkins, S.C., and Zhang, P. 2013. Correlative microscopy for 3D structural analysis of dynamic interactions. J. Vis. Exp. doi:10.3791/50386.
  Karreman, M.A., Agronskaia, A.V., van Donselaar, E.G., Vocking, K., Fereidouni, F., Humbel, B.M., Verrips, C.T., Verkleij, A.J., and Gerritsen, H.C. 2012. Optimizing immuno‐labeling for correlative fluorescence and electron microscopy on a single specimen. J. Struct. Biol. 180:382‐386.
  Koster, A.J. and Bárcena, M. 2006. Cryotomo‐graphy: Low‐dose automated tomography of frozen‐hydrated specimens. In Electron Tomography: Methods for Three‐Dimensional Visualization of Structures in the Cell, 2nd ed. (J. Frank, ed.) pp. 126‐129. Springer, New York.
  Leung, B.O. and Chou, K.C. 2011. Review of super‐resolution fluorescence microscopy for biology. Appl. Spectrosc. 65:967‐980.
  Lorenz, U.J. and Zewail, A.H. 2013. Biomechanics of DNA structures visualized by 4D electron microscopy. Proc. Natl. Acad. Sci. U.S.A. 110:2822‐2827.
  Maranto, A.R. 1982. Neuronal mapping: A photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 217:953‐955.
  McDonald, K.L. 2009. A review of high‐pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J. Microsc. 235:273‐281.
  McIntosh, R., Nicastro, D., and Mastronarde, D. 2005. New views of cells in 3D: An introduction to electron tomography. Trends Cell Biol. 15:43‐51.
  Modla, S., Mendonca, J., Czymmek, K.J., and Akins, R.E. 2010. Identification of neuromuscular junctions by correlative confocal and transmission electron microscopy. J. Neurosci. Methods 191:158‐165.
  Mooney, P., Contarato, D., Denes, P., Gubbens, A., Lee, B., Lent, M., and Agard, D. 2011. A high‐speed electron‐counting direct detection camera for TEM. Microsc. Microanal. 17:1004‐1005.
  Moran, D.T. and Rowley, J.C. 1987. Biological specimen preparation for correlative light and electron microscopy. In Correlative Microscopy in Biology: Instrumentation and Methods (M. Hayat, ed.) pp. 2‐22. Academic Press, Orlando, Fla.
  Morphew, M.K. 2007. 3D immunolocalization with plastic sections. Methods Cell Biol. 79:493.
  Nagayama, K. 2011. Phase plate electron microscopy. In Supramolecular Structure and Function 10 (J. Brnjas‐Kraljević and G. Pifat‐Mrzljak, eds.) pp. 101‐114. Springer, The Netherlands.
  Nisman, R., Dellaire, G., Ren, Y., Li, R., and Bazett‐Jones, D.P. 2004. Application of quantum dots as probes for correlative fluorescence, conventional, and energy‐filtered transmission electron microscopy. J. Histochem. Cytochem. 52:13‐18.
  Pereira, C.N., Daleprane, B., Barbosa, P.F., Moreira, A.N., and de Magalhães, C.S. 2014. Qualitative evaluation of scanning electron microscopy methods in a study of the resin cement/dentine adhesive interface. Microsc. Microanal. 20:268‐275.
  Powell, R.D., Halsey, C.M., and Hainfeld, J.F. 1998. Combined fluorescent and gold immunoprobes: reagents and methods for correlative light and electron microscopy. Microsc. Res. Techn. 42:2‐12.
  Rigort, A., Bäuerlein, F.J., Leis, A., Gruska, M., Hoffmann, C., Laugks, T., Böhm, U., Eibauer, M., Gnaegi, H., and Baumeister, W. 2010. Micromachining tools and correlative approaches for cellular cryo‐electron tomography. J. Struct. Biol. 172:169‐179.
  Robinson, J.M. and Takizawa, T. 2009. Correlative fluorescence and electron microscopy in tissues: immunocytochemistry. J. Microsc. 235:259‐272.
  Robinson, J.M., Takizawa, T., and Vandré, D.D. 2000a. Applications of gold cluster compounds in immunocytochemistry and correlative microscopy: comparison with colloidal gold. J. Microsc. 199:163‐179.
  Robinson, J.M., Takizawa, T., and Vandré, D.D. 2000b. Enhanced labeling efficiency using ultrasmall immunogold probes: Immunocytochemistry. J. Histochem. Cytochem. 48:487‐492.
  Robinson, J.M., Takizawa, T., Pombo, A., and Cook, P.R. 2001. Correlative fluorescence and electron microscopy on ultrathin cryosections: Bridging the resolution gap. J. Histochem. Cytochem. 49:803‐808.
  Rust, M.J., Bates, M., and Zhuang, X. 2006. Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793‐796.
  Schmued, L.C. and Snavely, L.F. 1993. Photoconversion and electron microscopic localization of the fluorescent axon tracer fluoro‐ruby (rhodamine‐dextran‐amine). J. Histochem. Cytochem. 41:777‐782.
  Schnell, U., Dijk, F., Sjollema, K.A., and Giepmans, B.N.G. 2012. Immunolabeling artifacts and the need for live‐cell imaging. Nat. Methods 9:152‐158.
  Schultz, C. 2009. Fluorescent revelations. Chem. Biol. 16:107‐111.
  Schwartz, C.L., Sarbash, V.I., Ataullakhanov, F.I., McIntosh, J.R., and Nicastro, D. 2007. Cryo‐fluorescence microscopy facilitates correlations between light and cryo‐electron microscopy and reduces the rate of photobleaching. J. Microsc. 227:98‐109.
  Schwarz, H. and Humbel, B.M. 2007. Correlative light and electron microscopy using immunolabeled resin sections. Electron Microsc. 369:229‐256.
  Shu, X., Lev‐Ram, V., Deerinck, T.J., Qi, Y., Ramko, E.B., Davidson, M.W., Jin, Y., Ellisman, M.H., and Tsien, R.Y. 2011. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9:e1001041.
  Sims, P.A. and Hardin, J. 2004. Visualizing green fluorescent protein and fluorescence associated with a gold conjugate in thin sections with correlative confocal and electron microscopy. Microsc. Microanal. 10:156‐157.
  Sosinsky, G.E., Gaietta, G.M., Hand, G., Deerinck, T.J., Han, A., Mackey, M., Adams, S.R., Bouwer, J., Tsien, R.Y., and Ellisman, M.H. 2003. Tetracysteine genetic tags complexed with biarsenical ligands as a tool for investigating gap junction structure and dynamics. Cell Comm. Adhesion 10:181‐186.
  Sosinsky, G.E., Giepmans, B.N., Deerinck, T.J., Gaietta, G.M., and Ellisman, M.H. 2007. Markers for correlated light and electron microscopy. Methods Cell Biol. 79:575‐591.
  Sprague, B.L., Pego, R.L., Stavreva, D.A., and McNally, J.G. 2004. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86:3473‐3495.
  Stirling, J.W. 1990. Immuno‐ and affinity probes for electron microscopy: A review of labeling and preparation techniques. J. Histochem. Cytochem. 38:145‐157.
  Studer, D., Humbel, B., and Chiquet, M. 2008. Electron microscopy of high pressure frozen samples: Bridging the gap between cellular ultrastructure and atomic resolution. Histochem. Cell Biol. 130:877‐889.
  Takizawa, T. and Robinson, J.M. 2012. Correlative fluorescence and transmission electron microscopy in tissues. Methods Cell Biol. 111:37‐57.
  Valentijn, J., van Driel, L., Agronskaia, A., Knoops, K., Koning, R., Barcena, M., Gerritsen, H., and Koster, A. 2008. Novel methods for cryo‐fluorescence microscopy permitting correlative cryo‐electron microscopy. Microsc. Microanal. 14:1314‐1315.
  Volkenandt, T., Müller, E., and Gerthsen, D. 2014. Sample thickness determination by scanning transmission electron microscopy at low electron energies. Microsc. Microanal. 20:111‐123.
  Von Bartheld, C.S., Cunningham, D.E., and Rubel, E.W. 1990. Neuronal tracing with DiI: Decalcification, cryosectioning, and photoconversion for light and electron microscopic analysis. J. Histochem. Cytochem. 38:725‐733.
  Wacker, I. and Schroeder, R.R. 2013. Array tomography. J. Microsc. 252:93‐99.
  Watanabe, S., Punge, A., Hollopeter, G., Willig, K.I., Hobson, R.J., Davis, M.W., Hell, S.W., and Jorgensen, E.M. 2011. Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8:80‐84.
  Webster, P., Schwarz, H., and Griffiths, G. 2008. Preparation of cells and tissues for immuno EM. Methods Cell Biol. 88:45‐58.
  Westphal, V., Rizzoli, S.O., Lauterbach, M.A., Kamin, D., Jahn, R., and Hell, S.W. 2008. Video‐rate far‐field optical nanoscopy dissects synaptic vesicle movement. Science 320:246‐249.
  Wouters, H. and Ploem, J.S. 1987. Light and scanning electron microscopy in a combined instrument. In Correlative Microscopy in Biology: Instrumentation and Methods (M. Hayat, ed.) pp. 23‐38. Academic Press, Orlando, Fla.
  Zaidi, M.R., Hornyak, T.J., and Merlino, G. 2011. A genetically engineered mouse model with inducible GFP expression in melanocytes. Pigment Cell Melanoma Res. 24:393‐394.
  Zhang, P. 2013. Correlative cryo‐electron tomography and optical microscopy of cells. Curr. Opin. Struct. Biol. 23:763‐770.
  Zhao, G., Perilla, J.R., Yufenyuy, E.L., Meng, X., Chen, B., Ning, J., Ahn, J., Gronenborn, A.M., Schulten, K., Aiken, C., and Zhang, P. 2013. Mature HIV‐1 capsid structure by cryo‐electron microscopy and all‐atom molecular dynamics. Nature 497:643‐646.
PDF or HTML at Wiley Online Library