Semi‐Automated Object Tracking Methods in Biological Imaging

Michael A. Davis1, Ondřej Pražský2, Laura R. Sysko1

1 Nikon Instruments, Melville, New York, 2 Laboratory Imaging, Prague, Czech Republic
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 12.38
DOI:  10.1002/0471142956.cy1238s71
Online Posting Date:  January, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Time‐lapse imaging is a rich data source offering potential kinetic information of cellular activity and behavior. Tracking and extracting measurements of objects from time‐lapse datasets are challenges that result from the complexity and dynamics of each object's motion and intensity or the appearance of new objects in the field of view. A wide range of strategies for proper data sampling, object detection, image analysis, and post‐analysis interpretation are available. Theory and methods for single‐particle tracking, spot detection, and object linking are discussed in this unit, as well as examples with step‐by‐step procedures for utilizing semi‐automated software and visualization tools for achieving tracking results and interpreting this output. © 2015 by John Wiley & Sons, Inc.

Keywords: object tracking; sampling frequency; image segmentation methods; object linking; image analysis; digital imaging; single‐particle tracking

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Image Acquisition
  • Sampling Frequency
  • Image Contrast
  • Object Tracking
  • Object Linking
  • Results of Object Tracking
  • Tracking Scenario: DIC Brightfield Time Lapse
  • Tracking Scenario: Fluorescent Bacteria Time Lapse
  • Tracking Example: Vascular Flow in Living Danio rerio (Zebrafish)
  • Tracking of siRNA Over Several Hours
  • Summary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Biggs, D. S. 2010. 3D deconvolution microscopy. Curr. Protoc. Cytom. 52:12.19:12.19.1‐12.19.20.
   Castleman, K. R. 1997. Two‐dimensional image processing and analysis. Curr. Protoc. Cytom. 00:10.5:10.5.1‐10.5.14.
   Chandrasekhar, S. 1949. Brownian motion, dynamical friction, and stellar dynamics. Rev. Modern Phys. 21:383‐388.
   Cheezum, M.K. , Walker, W.F. , and Guilford, W.H. 2001. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81: 2378‐2388.
   Jaqaman, K. , Loerke, D. , Mettlen, M. , Kuwata, H. , Grinstein, S. , Schmid, S.L. , and Danuser, G. 2008. Robust single‐particle tracking in live‐cell time‐lapse sequences. Nat. Methods 5:695‐702.
   Julie Kang, J. , Toma, I. , Sipos, A. and Peti‐Peterdi, J. 2008. From in vitro to in vivo: Imaging from the single cell to the whole organism. Curr. Protoc. Cytom. 44:12.12:12.12.1‐12.12.26.
   Li, K. , Miller, E.D. , Chen, M. , Kanade, T. , Weiss, L.E. , and Campbell, P.G. 2008. Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal. 12:546‐566.
   Meijering, E. , Dzyubachyk, O. , Smal, I. and Van Cappellen, W.A. 2009. Tracking in cell and developmental biology. Semin. Cell Dev. Biol. 20:894‐902.
   Pawley, J.B. 2006. Handbook of Biological Confocal Microscopy, 3rd ed. ( J.B. Pawley , ed.) pp. 381‐383. Springer Science+Business Media, New York.
   Sysko, L. R. and Davis, M. A. 2010. From image to data using common image‐processing techniques. Curr. Protoc. Cytom. 54:12.21:12.21.1‐12.21.17.
   Turek, J. 2000. Image processing and 2‐D morphometry. Curr. Protoc. Cytom. 13:10.11:10.11.1‐10.11.11.
PDF or HTML at Wiley Online Library