High‐Content Microscopy Analysis of Subcellular Structures: Assay Development and Application to Focal Adhesion Quantification

Torsten Kroll1, David Schmidt1, Georg Schwanitz2, Mubashir Ahmad3, Jana Hamann2, Corinne Schlosser2, Yu‐Chieh Lin2, Konrad J. Böhm2, Jan Tuckermann3, Aspasia Ploubidou2

1 These authors contributed equally to this work, 2 Leibniz Institute on Aging—Fritz Lipmann Institute, Jena, 3 Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 12.43
DOI:  10.1002/cpcy.7
Online Posting Date:  July, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

High‐content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high‐throughput image acquisition, HCA applied to the screening of chemicals or RNAi‐reagents is termed high‐content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step‐by‐step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy‐based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc.

Keywords: focal adhesions; high‐content analysis; high‐content screening; microscopy automation; quantitative microscopy; subcellular organelles

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Automated Image Acquisition and Quantitative Analysis of Focal Adhesions
  • Alternate Protocol 1: Alternative Whole Cell/Cell Outline Labeling
  • Alternate Protocol 2: Adaptation of the Image‐Analysis Protocol to Other HCA Applications
  • Support Protocol 1: Data Meta‐Analysis
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Automated Image Acquisition and Quantitative Analysis of Focal Adhesions

  Materials
  • 70% (v/v) ethanol
  • 1× phosphate‐buffered saline (PBS; see recipe for 10× stock solution), sterile
  • African green monkey kidney fibroblast (COS‐7) cells in 10‐cm Petri dishes
  • Trypsin‐EDTA solution (e.g., Biowest, cat. no. L0930‐100)
  • Culture medium: DMEM supplemented with 2 mM l‐glutamine (add from 200 mM stock) and 10% (v/v) FBS
  • Sodium borohydride (NaBH 4; observe precautions described in MSDS)
  • Fixative (see recipe)
  • Blocking buffer: 1% (w/v) BSA and 2% (v/v) FBS in 1× PBS
  • Primary antibodies:
    • Rabbit anti‐α‐tubulin antibody (Abcam, cat. no. ab53866; 1:150 dilution in blocking buffer)
    • Mouse anti‐paxillin antibody (Transduction Lab, cat. no. P13520; 1:1000 dilution in blocking buffer)
  • Secondary antibodies:
    • Goat anti‐rabbit AlexaFluor647‐conjugated IgG antibody (Life Technologies, cat. no. A21244; 1:400 dilution in blocking buffer)
    • Goat anti‐mouse AlexaFluor594‐conjugated IgG antibody (Life Technologies, cat. no. A11005; 1:800 dilution in blocking buffer)
  • 1 μg/ml (w/v) 4′, 6‐diamidino‐2‐phenylindole (DAPI) in distilled, deionized H 2O (observe precautions described in MSDS; store at 4ºC protected from light)
  • Sodium azide (NaN 3; observe precautions described in MSDS)
  • Antifade mounting medium (see recipe)
  • Liquid/cell dispenser unit compatible with microplates, with dispenser cassettes for 1 to 50 µl and 10 µl to 10 ml dispensing volumes (e.g., MicroFlo Select, BioTek Instruments GmbH)
  • Liquid handling workstation (e.g., Freedom Evo, TECAN)
  • Tissue culture‐treated Petri dishes or flasks
  • Epifluorescence microscope with appropriate filters and a CCD camera, either inverted, with long‐distance objectives (for specimens prepared in multiwell plates or on slide‐mounted coverslips) or upright (for specimens prepared on slide‐mounted coverslips)
  • Micro‐plate handler (e.g., Twister II, Perkin‐Elmer)
  • Automated cell counter (e.g., CASY, Schärfe System GmbH) or Neubauer cell counting chamber
  • Reagent troughs (e.g., VWR, cat. no. 613‐0466)
  • Multichannel (8‐ or 12‐channel) dispensing pipettor, 10‐ to 200‐µl step size
  • Tissue culture–treated 96‐ or 384‐well black‐walled assay plates with flat cell attachment surface (“flat bottom” plates; e.g., Corning Falcon, cat. no. 353219)
  • Adhesive foil microtiter plate sealers (e.g., ViewSeal; Greiner, cat. no. 676070)
  • Automated epifluorescence microscope (e.g., GE IN Cell Analyzer 2200, Thermo Cellomics ArrayScan VTI, BD Pathway 435) with a set of fluorescence filters covering the visible and near‐infrared range of the light spectrum, as well as multiple objectives (e.g., 10×, 20×, 40×)
  • Microscope‐associated image‐acquisition software
  • Image analysis software (e.g., CellProfiler; Carpenter et al., ; Kamentsky et al., )
  • Image‐acquisition and data‐analysis workstations (for additional information, see Internet Resources; in this protocol, image analysis was performed with CellProfiler and data meta‐analysis with Microsoft Excel, R, STRING, DAVID, and Cytoscape
  • Glass coverslips (thickness #1; 12‐mm diameter; e.g., VWR Menzel‐Gläser, cat. no. 631‐0713)
  • Glass microscope slides (e.g., Carl Roth GmbH & Co. KG, cat. no. H868)
  • Additional reagents and equipment for counting cells ( appendix 3A; Phelan and Lawler, )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Abraham, V.C., Taylor, D.L., and Haskins, J.R. 2004. High content screening applied to large‐scale cell biology. Trends Biotechnol. 22:15‐22. doi: 10.1016/j.tibtech.2003.10.012.
  Adams, R. and Bischof, L. 1994. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16:641‐647. doi: 10.1109/34.295913.
  Al‐Shahrour, F., Diaz‐Uriarte, R., and Dopazo, J. 2004. FatiGO: A web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578‐580. doi: 10.1093/bioinformatics/btg455.
  Beissbarth, T. and Speed, T.P. 2004. GOstat: Find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20:1464‐1465. doi: 10.1093/bioinformatics/bth088.
  Berginski, M.E., Vitriol, E.A., Hahn, K.M., and Gomez, S.M. 2011. High‐resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One 6:e22025. doi: 10.1371/journal.pone.0022025.
  Beucher, S. and Lantuejoul, C. 1979. Use of watersheds in contour detection. International Workshop on Image Processing: Real‐Time and Motion Detection/Estimation, Rennes, France. IRISA Report 132:2.1‐2, 12.
  Birmingham, A., Selfors, L.M., Forster, T., Wrobel, D., Kennedy, C.J., Shanks, E., Santoyo‐Lopez, J., Dunican, D.J., Long, A., Kelleher, D., Smith, Q., Beijersbergen, R.L., Ghazal, P., and Shamu, C.E. 2009. Statistical methods for analysis of high‐throughput RNA interference screens. Nat. Methods 6:569‐575. doi: 10.1038/nmeth.1351.
  Boutros, M., Heigwer, F., and Laufer, C. 2015. Microscopy‐based high‐content screening. Cell 163:1314‐1325. doi: 10.1016/j.cell.2015.11.007.
  Breitkreutz, B.J., Stark, C., and Tyers, M. 2003. Osprey: A network visualization system. Genome Biol. 4:R22. doi: 10.1186/gb‐2003‐4‐3‐r22.
  Buchser, W., Collins, M., Garyantes, T., Guha, R., Haney, S., Lemmon, V., Li, Z., and Trask, O.J. 2004. Assay development guidelines for image‐based high content screening, high content analysis and high content imaging. In Assay Guidance Manual (G.S. Sittampalam, N.P. Coussens, H. Nelson, M. Arkin, D. Auld, C. Austin, B. Bejcek, M. Glicksman, J. Inglese, V. Lemmon, Z. Li, J. McGee, O. McManus, L. Minor, A. Napper, T. Riss, O.J. Trask, and J. Weidner, eds.). Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, Maryland.
  Cardullo, R.A. and Hinchcliffe, E.H. 2013. Post‐processing for statistical image analysis in light microscopy. Methods Cell Biol. 114:285‐315. doi: 10.1016/B978‐0‐12‐407761‐4.00012‐9.
  Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., Golland, P., and Sabatini, D.M. 2006. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7:R100. doi: 10.1186/gb‐2006‐7‐10‐r100.
  Cline, M.S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., Christmas, R., Avila‐Campilo, I., Creech, M., Gross, B., Hanspers, K., Isserlin, R., Kelley, R., Killcoyne, S., Lotia, S., Maere, S., Morris, J., Ono, K., Pavlovic, V., Pico, A.R., Vailaya, A., Wang, P.L., Adler, A., Conklin, B.R., Hood, L., Kuiper, M., Sander, C., Schmulevich, I., Schwikowski, B., Warner, G.J., Ideker, T., and Bader, G.D. 2007. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2:2366‐2382. doi: 10.1038/nprot.2007.324.
  Coecke, S., Balls, M., Bowe, G., Davis, J., Gstraunthaler, G., Hartung, T., Hay, R., Merten, O.W., Price, A., Schechtman, L., Stacey, G., and Stokes, W. 2005. Guidance on good cell culture practice. a report of the second ECVAM task force on good cell culture practice. Altern. Lab Anim. 33:261‐287.
  Coffman, V.C. and Wu, J.Q. 2014. Every laboratory with a fluorescence microscope should consider counting molecules. Mol. Biol. Cell 25:1545‐1548. doi: 10.1091/mbc.E13‐05‐0249.
  Cordelieres, F.P. and Bolte, S. 2014. Experimenters’ guide to colocalization studies: Finding a way through indicators and quantifiers, in practice. Methods Cell Biol. 123:395‐408. doi: 10.1016/B978‐0‐12‐420138‐5.00021‐5.
  Dahlquist, K.D., Salomonis, N., Vranizan, K., Lawlor, S.C., and Conklin, B.R. 2002. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31:19‐20. doi: 10.1038/ng0502‐19.
  De Solorzano, C.O., Malladi, R., Lelievre, S.A., and Lockett, S.J. 2001. Segmentation of nuclei and cells using membrane related protein markers. J. Microsc. 201:404‐415. doi: 10.1046/j.1365‐2818.2001.00854.x.
  Dunlay, R.T., Czekalski, W.J., and Collins, M.A. 2007. Overview of informatics for high content screening. Methods Mol. Biol. 356:269‐280.
  Durr, O., Duval, F., Nichols, A., Lang, P., Brodte, A., Heyse, S., and Besson, D. 2007. Robust hit identification by quality assurance and multivariate data analysis of a high‐content, cell‐based assay. J. Biomol. Screen 12:1042‐1049. doi: 10.1177/1087057107309036.
  Echeverri, C.J. and Perrimon, N. 2006. High‐throughput RNAi screening in cultured cells: A user's guide. Nat. Rev. Genet. 7:373‐384. doi: 10.1038/nrg1836.
  Ekins, S., Olechno, J., and Williams, A.J. 2013. Dispensing processes impact apparent biological activity as determined by computational and statistical analyses. PLoS One 8:e62325. doi: 10.1371/journal.pone.0062325.
  Evans, J.G. and Matsudaira, P. 2007. Linking microscopy and high content screening in large‐scale biomedical research. Methods Mol. Biol. 356:33‐38.
  Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., von Mering, C., and Jensen, L.J. 2013. STRING v9.1: Protein‐protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41:D808‐815. doi: 10.1093/nar/gks1094.
  Garrido, A. and Pérez de la Blanca, N. 2000. Applying deformable templates for cell image segmentation. Pattern Recognit. 33:821‐832. doi: 10.1016/S0031‐3203(99)00091‐6.
  Giloh, H. and Sedat, J.W. 1982. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n‐propyl gallate. Science 217:1252‐1255. doi: 10.1126/science.7112126.
  Giuliano, K.A., Johnston, P.A., Gough, A., and Taylor, D.L. 2006. Systems cell biology based on high‐content screening. Meth. Enzymol. 414:601‐619. doi: 10.1016/S0076‐6879(06)14031‐8.
  Goldovsky, L., Cases, I., Enright, A.J., and Ouzounis, C.A. 2005. BioLayout(Java): Versatile network visualisation of structural and functional relationships. Appl. Bioinformatics 4:71‐74. doi: 10.2165/00822942‐200504010‐00009.
  Gough, A.H. and Johnston, P.A. 2007. Requirements, features, and performance of high content screening platforms. Methods Mol. Biol. 356:41‐61.
  Hartung, T., Balls, M., Bardouille, C., Blanck, O., Coecke, S., Gstraunthaler, G., and Lewis, D. 2002. Good cell culture practice. ECVAM good cell culture practice task force report 1. Altern. Lab. Anim. 30:407‐414.
  Hay, R.J. 2006. Representative cultured cell lines and their characteristics. In Cell Biology: A Laboratory Handbook (J.E. Celis, ed.), Chapter 69. Elsevier, Amsterdam.
  Heimer, G.V. and Taylor, C.E. 1974. Improved mountant for immunofluorescence preparations. Am. J. Clin. Pathol. 27:254‐256. doi: 10.1136/jcp.27.3.254.
  Hu, Z., Mellor, J., Wu, J., Yamada, T., Holloway, D., and Delisi, C. 2005. VisANT: Data‐integrating visual framework for biological networks and modules. Nucleic Acids Res. 33:W352‐357. doi: 10.1093/nar/gki431.
  Huang da, W., Sherman, B.T., and Lempicki, R.A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44‐57. doi: 10.1038/nprot.2008.211.
  Janitz, M., Vanhecke, D., and Lehrach, H. 2006. High‐throughput RNA interference in functional genomics. Handb. Exp. Pharmacol. 97‐104. doi: 10.1007/3‐540‐27262‐3_5.
  Johnson, G.D. and Nogueira Araujo, G.M. 1981. A simple method of reducing the fading of immunofluorescence during microscopy. J. Immunol. Methods 43:349‐350. doi: 10.1016/0022‐1759(81)90183‐6.
  Kamentsky, L., Jones, T.R., Fraser, A., Bray, M.A., Logan, D.J., Madden, K.L., Ljosa, V., Rueden, C., Eliceiri, K.W., and Carpenter, A.E. 2011. Improved structure, function and compatibility for CellProfiler: Modular high‐throughput image analysis software. Bioinformatics 27:1179‐1180. doi: 10.1093/bioinformatics/btr095.
  Khatri, P., Bhavsar, P., Bawa, G., and Draghici, S. 2004. Onto‐Tools: An ensemble of web‐accessible, ontology‐based tools for the functional design and interpretation of high‐throughput gene expression experiments. Nucleic Acids Res. 32:W449‐456. doi: 10.1093/nar/gkh409.
  Klenk, J.A. 2007. Characteristics and value of machine learning for imaging in high content screening. Methods Mol. Biol. 356:83‐94.
  Krämer, A., Mentrup, T., Kleizen, B., Rivera‐Milla, E., Reichenbach, D., Enzensperger, C., Nohl, R., Tauscher, E., Gorls, H., Ploubidou, A., Englert, C., Werz, O., Arndt, H.D., and Kaether, C. 2013. Small molecules intercept Notch signaling and the early secretory pathway. Nat. Chem. Biol. 9:731‐738. doi: 10.1038/nchembio.1356.
  Lin, Z., Jin, J., and Talbot, H. 2000. Unseeded region growing for 3D image segmentation. Visualisation 2000, pan‐Sydney workshop on visual information processing (P. Eades and J. Jin, eds.). ACS Conferences in Research and Practice Information Technology Series, Vol. 2. pp. 31‐37.
  Malo, N., Hanley, J.A., Carlile, G., Liu, J., Pelletier, J., Thomas, D., and Nadon, R. 2010. Experimental design and statistical methods for improved hit detection in high‐throughput screening. J. Biomol. Screen 15:990‐1000. doi: 10.1177/1087057110377497.
  Martin, D., Brun, C., Remy, E., Mouren, P., Thieffry, D., and Jacq, B. 2004. GOToolBox: Functional analysis of gene datasets based on Gene Ontology. Genome Biol. 5:R101. doi: 10.1186/gb‐2004‐5‐12‐r101.
  Marx, V. 2014. Pouring over liquid handling. Nat. Methods 11:33‐38. doi: 10.1038/nmeth.2785.
  Melan, M.A. 1994. Overview of cell fixation and permeabilization. Methods Mol. Biol. 34:55‐66.
  Mellor, J.C., Yanai, I., Clodfelter, K.H., Mintseris, J., and DeLisi, C. 2002. Predictome: A database of putative functional links between proteins. Nucleic Acids Res. 30:306‐309. doi: 10.1093/nar/30.1.306.
  Meyer, F. and Beucher, S. 1990. Morphological segmentation. J. Vis. Commun. Image Represent. 1:21‐46. doi: 10.1016/1047‐3203(90)90014‐M.
  Mohr, S.E., Smith, J.A., Shamu, C.E., Neumuller, R.A., and Perrimon, N. 2014. RNAi screening comes of age: Improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15:591‐600. doi: 10.1038/nrm3860.
  Montero, C. 2003. The antigen‐antibody reaction in immunohistochemistry. J. Histochem. Cytochem. 51:1‐4. doi: 10.1177/002215540305100101.
  Müller, H., Schmidt, D., Steinbrink, S., Mirgorodskaya, E., Lehmann, V., Habermann, K., Dreher, F., Gustavsson, N., Kessler, T., Lehrach, H., Herwig, R., Gobom, J., Ploubidou, A., Boutros, M., and Lange, B.M. 2010. Proteomic and functional analysis of the mitotic Drosophila centrosome. EMBO J. 29:3344‐3357. doi: 10.1038/emboj.2010.210.
  Osborn, M. 2006. Immunofluorescence microscopy of cultured cells. In Cell Biology: A Laboratory Handbook (J. Celis, ed.), Chapter 66, pp. 549‐555. Elsevier, Amsterdam
  Osborn, M. and Weber, K. 1982. Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: Tubulin‐containing structures. Methods Cell Biol. 24:97‐132. doi: 10.1016/S0091‐679X(08)60650‐0.
  Otsu, N. 1979. A threshold selection method from grey level histograms. IEEE Trans. Syst. Man. Cyb. 9:62‐66. doi: 10.1109/TSMC.1979.4310076.
  Padmanabhan, K., Eddy, W.F., and Crowley, J.C. 2010. A novel algorithm for optimal image thresholding of biological data. J. Neurosci. Methods 193:380‐384. doi: 10.1016/j.jneumeth.2010.08.031.
  Pavlidis, T. and Liow, Y.‐T. 1990 Integrating region growing and edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 12:225‐233. doi: 10.1109/34.49050.
  Pepperkok, R. and Ellenberg, J. 2006. High‐throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7:690‐696. doi: 10.1038/nrm1979.
  Phelan, M.C. and Lawler, G. 1997. Cell counting. Curr. Protoc. Cytom. 00:A.3A.1‐A.3A.4.
  Prast, J. Gimona, M., and Victor Small, J. 2006. Immunofluorescence microscopy of the cytoskeleton: Combination with green fluorescent protein tags. In Cell Biology: A Laboratory Handbook (J.E. Celis, ed.), Chapter 67, pp. 557‐561. Elsevier, Amsterdam.
  Rimon, N. and Schuldiner, M. 2011. Getting the whole picture: Combining throughput with content in microscopy. J. Cell Sci. 124:3743‐3751. doi: 10.1242/jcs.087486.
  Ross, S.T., Allen, J.R., and Davidson, M.W. 2014. Practical considerations of objective lenses for application in cell biology. Methods Cell Biol. 123:19‐34. doi: 10.1016/B978‐0‐12‐420138‐5.00002‐1.
  Sahoo, P.K., Soltani, S., Wong, A.K.C., and Chen, Y.C. 1988. A survey of thresholding techniques. Comput. Vision Graph. Image Process. 41:233‐260. doi: 10.1016/0734‐189X(88)90022‐9.
  Scherr, M. and Eder, M. 2004. RNAi in functional genomics. Curr. Opin. Mol. Ther. 6:129‐135.
  Shalem, O., Sanjana, N.E., and Zhang, F. 2015. High‐throughput functional genomics using CRISPR‐Cas9. Nat. Rev. Genet. 16:299‐311. doi: 10.1038/nrg3899.
  Shaner, N.C. 2014. Fluorescent proteins for quantitative microscopy: Important properties and practical evaluation. Methods Cell Biol. 123:95‐111. doi: 10.1016/B978‐0‐12‐420138‐5.00006‐9.
  Shariff, A., Kangas, J., Coelho, L.P., Quinn, S., and Murphy, R.F. 2010. Automated image analysis for high‐content screening and analysis. J. Biomol. Screen. 15:726‐734. doi: 10.1177/1087057110370894.
  Shaw, S.L. and Hinchcliffe, E.H. 2013. 65,000 shades of grey: Use of digital image files in light microscopy. Methods Cell Biol. 114:317‐336. doi: 10.1016/B978‐0‐12‐407761‐4.00013‐0.
  Shrivakshan, G.T. and Chandrasekar, C. 2012. A Comparison of various edge detection techniques used in image processing. IJCSI Int. J. Comput. Sci. Issues 9:1694‐0814.
  Silva, J., Chang, K., Hannon, G.J., and Rivas, F.V. 2004. RNA‐interference‐based functional genomics in mammalian cells: Reverse genetics coming of age. Oncogene 23:8401‐8409. doi: 10.1038/sj.onc.1208176.
  Singh, S., Carpenter, A.E., and Genovesio, A. 2014. Increasing the content of high‐content screening: An overview. J. Biomol. Screen. 19:640‐650. doi: 10.1177/1087057114528537.
  Sluder, G. and Nordberg, J.J. 2013. Microscope basics. Methods Cell Biol. 114:1‐10. doi: 10.1016/B978‐0‐12‐407761‐4.00001‐4.
  Sommer, C. and Gerlich, D.W. 2013. Machine learning in cell biology—teaching computers to recognize phenotypes. J. Cell Sci. 126:5529‐5539. doi: 10.1242/jcs.123604.
  Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P. 2005. Gene set enrichment analysis: A knowledge‐based approach for interpreting genome‐wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102:15545‐15550. doi: 10.1073/pnas.0506580102.
  Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B., Galperin, M.Y., Fedorova, N.D., and Koonin, E.V. 2001. The COG database: New developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29:22‐28. doi: 10.1093/nar/29.1.22.
  Thavarajah, R., Mudimbaimannar, V.K., Elizabeth, J., Rao, U.K., and Ranganathan, K. 2012. Chemical and physical basics of routine formaldehyde fixation. J. Oral Maxillofac. Pathol. 16:400‐405. doi: 10.4103/0973‐029X.102496.
  Tischer, C., Hilsenstein, V., Hanson, K., and Pepperkok, R. 2014. Adaptive fluorescence microscopy by online feedback image analysis. Methods Cell Biol. 123:489‐503. doi: 10.1016/B978‐0‐12‐420138‐5.00026‐4.
  Tsygankov, D., Chu, P.H., Chen, H., Elston, T.C., and Hahn, K.M. 2014. User‐friendly tools for quantifying the dynamics of cellular morphology and intracellular protein clusters. Methods Cell Biol. 123:409‐427. doi: 10.1016/B978‐0‐12‐420138‐5.00022‐7.
  Wahlby, C., Sintorn, I.M., Erlandsson, F., Borgefors, G., and Bengtsson, E. 2004. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc. 215:67‐76. doi: 10.1111/j.0022‐2720.2004.01338.x.
  Waters, J.C. and Wittmann, T. 2014. Concepts in quantitative fluorescence microscopy. Methods Cell Biol. 123:1‐18. doi: 10.1016/B978‐0‐12‐420138‐5.00001‐X.
  Winograd‐Katz, S.E., Itzkovitz, S., Kam, Z., and Geiger, B. 2009. Multiparametric analysis of focal adhesion formation by RNAi‐mediated gene knockdown. J. Cell Biol. 186:423‐436. doi: 10.1083/jcb.200901105.
  Winograd‐Katz, S.E., Fassler, R., Geiger, B., and Legate, K.R. 2014. The integrin adhesome: From genes and proteins to human disease. Nat. Rev. Mol. Cell Biol. 15:273‐288. doi: 10.1038/nrm3769.
  Wolf, D.E. 2013. Fundamentals of fluorescence and fluorescence microscopy. Methods Cell Biol. 114:69‐97. doi: 10.1016/B978‐0‐12‐407761‐4.00004‐X.
  Wollman, R. and Stuurman, N. 2007. High throughput microscopy: From raw images to discoveries. J. Cell Sci. 120:3715‐3722. doi: 10.1242/jcs.013623.
  Yang, Q. and Parvin, B. 2002. Chef: Convex hull of elliptic features for 3D blob detection. International Conference on Pattern Recognition (R. Kasturi, D. Laurendeau, and C. Suen, eds.) pp. 282‐285.
Internet Resources
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Supplementary Material