Stochastic Optical Reconstruction Microscopy (STORM)

Jianquan Xu1, Hongqiang Ma1, Yang Liu2

1 Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, 2 Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh
Publication Name:  Current Protocols in Cytometry
Unit Number:  Unit 12.46
DOI:  10.1002/cpcy.23
Online Posting Date:  July, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Super‐resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten‐fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects—sample preparation, image acquisition, and image reconstruction—to ensure a high‐quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc.

Keywords: single molecule localization microscopy (SMLM); stochastic optical reconstruction microscopy (STORM); super‐resolution fluorescence microscopy

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Labeling of Photo‐Switchable Fluorophores
  • Basic Protocol 2: Image Acquisition
  • Basic Protocol 3: Image Reconstruction
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Labeling of Photo‐Switchable Fluorophores

  Materials
  • Poly‐D‐lysine (PDL)
  • Gold nanoparticle suspension (100 nm particle size; BBI Solutions, cat. no. EM.GC100)
  • Alexa Fluor 405 carboxylic acid succinimidyl ester (ThermoFisher)
  • Alexa Fluor 647 carboxylic acid succinimidyl ester (ThermoFisher)
  • Cy2 and Cy3B reactive dye (GE Healthcare)
  • Dimethylsulfoxide (DMSO; anhydrous)
  • Sodium bicarbonate (NaHCO 3)
  • Secondary antibodies:
    • Donkey anti‐rabbit antibody (Jackson ImmunoResearch)
    • Donkey anti‐mouse antibody (Jackson ImmunoResearch)
  • Phosphate‐buffered saline (PBS; Sigma‐Aldrich)
  • Cytoskeleton buffer (see recipe)
  • 4% (w/v) paraformaldehyde (PFA) in PBS
  • 0.1% (v/v) Triton X‐100 in PBS (permeabilization buffer)
  • Blocking buffer: 3% (w/v) BSA plus 0.1% (v/v) Triton X‐100 in PBS
  • Primary antibody:
    • Rabbit anti‐histone H2B antibody (Abcam, cat. no. ab1790)
    • Rabbit anti‐alpha tubulin antibody (Abcam, cat. no. ab18251)
    • Rabbit anti‐H3K4me3 antibody (EMD Millipore, cat. no. 07‐473)
    • Mouse anti‐H3K9ac antibody (Abcam, cat. no. ab12179)
  • Washing buffer (see recipe)
  • Glass bottom cell culture dishes (World Precision Instruments, cat. no. FD3510) or #1.5 coverslips
  • Ultrasound bath sonicator
  • Shaking platform
  • NAP‐5 size‐exclusion columns
  • Nanodrop 2000 microspectrophotometer

Basic Protocol 2: Image Acquisition

  Materials
  • Glucose oxidase from Aspergillus niger, type VII, lyophilized powder, ≥ 100,000 U/g solid (Sigma‐Aldrich)
  • 17 mg/ml catalase from bovine liver, lyophilized powder, ≥ 10,000 units/mg protein (Sigma‐Aldrich) in buffer A
  • Buffer A (see recipe)
  • Cysteamine (MEA; Sigma‐Aldrich)
  • 0.25 N HCl
  • Buffer B (see recipe)
  • Dish with cells from protocol 1, step 22
  • Immersion oil for microscopy
  • Cyclooctatetraene (COT; Sigma‐Aldrich; optional)
  • Fluorescence microscope

Basic Protocol 3: Image Reconstruction

  Materials
  • Raw images from protocol 2
  • ThunderSTORM software (http://zitmen.github.io/thunderstorm/)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Bates, M., Jones, S. A., & Zhuang, X. (2013a). Preparation of photoswitchable labeled antibodies for STORM imaging. Cold Spring Harbor Protocols, 2013, 540–541. Available at http://www.ncbi.nlm.nih.gov/pubmed/23734027. doi: 10.1101/pdb.prot075168.
  Bates, M., Jones, S. A., & Zhuang, X. (2013b). Stochastic optical reconstruction microscopy (STORM): A method for superresolution fluorescence imaging. Cold Spring Harbor Protocols, 2013, 498–520. Available at http://www.ncbi.nlm.nih.gov/pubmed/23734025. doi: 10.1101/pdb.top075143.
  Bates, M., Huang, B., Dempsey, G. T., & Zhuang, X. (2007). Multicolor super‐resolution imaging with photo‐switchable fluorescent probes. Science, 317, 1749–1753. Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633025/pdf/nihms‐88394.pdf. doi: 10.1126/science.1146598.
  Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., … Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645. doi: 10.1126/science.1127344.
  Dani, A., Huang, B., Bergan, J., Dulac, C., & Zhuang, X. 2010. Superresolution imaging of chemical synapses in the brain. Neuron, 68, 843–856. Available at https://doi.org/10.1016/j.neuron.2010.11.021. doi: 10.1016/j.neuron.2010.11.021.
  Dempsey, G. T., Bates, M., Kowtoniuk, W. E., Liu, D. R., Tsien, R. Y., & Zhuang, X. (2009). Photoswitching mechanism of cyanine dyes. Journal of the American Chemical Society, 131, 18192–18193. doi: 10.1021/ja904588g.
  Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M., & Zhuang, X. (2011). Evaluation of fluorophores for optimal performance in localization‐based super‐resolution imaging. Nature Methods, 8, 1027–1036. Available at http://www.ncbi.nlm.nih.gov/pubmed/22056676. doi: 10.1038/nmeth.1768.
  Douglass, K. M., Sieben, C., Archetti, A., Lambert, A., & Manley, S. (2016). Super‐resolution imaging of multiple cells by optimized flat‐field epi‐illumination. Nature Photonics, 10, 705–708. Available at http://www.nature.com/doifinder/10.1038/nphoton.2016.200. doi: 10.1038/nphoton.2016.200.
  Endesfelder, U. & Heilemann, M. (2015). Direct stochastic optical reconstruction microscopy (dSTORM). In P.J. Verveer (Ed.), Advanced fluorescence microscopy (pp. 263–276). New York: Springer.
  Galland, R., Grenci, G., Aravind, A., Viasnoff, V., Studer, V., & Sibarita, J.‐B. (2015). 3D high‐ and super‐resolution imaging using single‐objective SPIM. Nature Methods, 12, 641–644. doi: 10.1038/nmeth.3402.
  Gebhardt, J. C. M., Suter, D. M., Roy, R., Zhao, Z. W., Chapman, A. R., Basu, S., … Xie, X. S. (2013). Single‐molecule imaging of transcription factor binding to DNA in live mammalian cells. Nature Methods, 10, 421–426. doi: 10.1038/nmeth.2411.
  Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal de Microscopie, 198, 82–87. Available at http://www.ncbi.nlm.nih.gov/pubmed/10810003. doi: 10.1046/j.1365‐2818.2000.00710.x.
  Heilemann, M., van de Linde, S., Schuttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., … Sauer, M. (2008). Subdiffraction‐resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie, 47, 6172–6176. Available at http://www.ncbi.nlm.nih.gov/pubmed/18646237. doi: 10.1002/anie.200802376.
  Hell, S. W. & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated‐emission—Stimulated‐Emission‐Depletion Fluorescence Microscopy. Optics Letters, 19, 780–782. doi: https://doi.org/10.1364/OL.19.000780.
  Hess, S. T., Girirajan, T. P. K., & Mason, M. D. (2006). Ultra‐high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 91, 4258–4272. doi: 10.1529/biophysj.106.091116.
  Holden, S. J., Uphoff, S., & Kapanidis, A. N. (2011). DAOSTORM: An algorithm for high‐ density super‐resolution microscopy. Nature Methods, 8, 279–280. doi: 10.1038/nmeth0411‐279.
  Hoogendoorn, E., Crosby, K. C., Leyton‐Puig, D., Breedijk, R. M. P., Jalink, K., Gadella, T. W. J., & Postma, M. (2014). The fidelity of stochastic single‐molecule super‐resolution reconstructions critically depends upon robust background estimation. Scientific Reports, 4, 3854. doi: 10.1038/srep03854.
  Huang, F., Hartwich, T. M., Rivera‐Molina, F. E., Lin, Y., Duim, W. C., Long, J. J., … Bewersdorf, J. (2013). Video‐rate nanoscopy using sCMOS camera–specific single‐molecule localization algorithms. Nature Methods, 10, 653–658. Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3696415/pdf/nihms475969.pdf. doi: 10.1038/nmeth.2488.
  Huang, F., Schwartz, S. L., Byars, J. M., & Lidke, K. A. (2011). Simultaneous multiple‐emitter fitting for single molecule super‐resolution imaging. Biomedical Optics Express, 2, 1377–1393. doi: 10.1364/BOE.2.001377.
  Lambert, T. J. & Waters, J. C. (2016). Navigating challenges in the application of superresolution microscopy. The Journal of Cell Biology, 1–11. doi: 10.1083/jcb.201610011.
  Lee, S. H., Baday, M., Tjioe, M., Simonson, P. D., Zhang, R., Cai, E., & Selvin, P. R. (2012). Using fixed fiduciary markers for stage drift correction. Optics Express, 20, 12177–12183. doi: 10.1364/OE.20.012177.
  Ma, H., Long, F., Zeng, S., & Huang, Z. L. (2012). Fast and precise algorithm based on maximum radial symmetry for single molecule localization. Optics Letters, 37, 2481–2483. doi: 10.1364/OL.37.002481.
  Ma, H., Xu, J., Jin, J., Gao, Y., Lan, L., & Liu, Y. (2015). Fast and precise 3D fluorophore localization based on gradient fitting. Scientific Reports, 5, 14335. doi: 10.1038/srep14335.
  Mlodzianoski, M. J., Schreiner, J. M., Callahan, S. P., Smolková, K., Dlasková, A., Šantorová, J., … Je, P. (2011). Sample drift correction in 3D fluorescence photoactivation localization microscopy. Optics Express, 19, 15009. doi: 10.1364/OE.19.015009.
  Mortensen, K. I., Churchman, L. S., Spudich, J. A, & Flyvbjerg, H. (2010). Optimized localization analysis for single‐molecule tracking and super‐resolution microscopy. Nature Methods, 7, 377–381. doi: 10.1038/nmeth.1447.
  Mukamel, E. A., Babcock, H., & Zhuang, X. (2012). Statistical deconvolution for superresolution fluorescence microscopy. Biophysical Journal, 102, 2391–2400. doi: 10.1016/j.bpj.2012.03.070.
  Nahidiazar, L., Agronskaia, A. V., Broertjes, J., van den Broek, B., & Jalink, K. (2016). Optimizing imaging conditions for demanding multi‐color super‐resolution localization microscopy. PLOS One, 11, e0158884. Available at http://dx.plos.org/10.1371/journal.pone.0158884 [Accessed July 20, 2016]. doi: 10.1371/journal.pone.0158884.
  Nieuwenhuizen, R. P. J., Lidke, K. A, Bates, M., Puig, D. L., Grünwald, D., Stallinga, S., & Rieger, B. (2013). Measuring image resolution in optical nanoscopy. Nature Methods, 10, 557–562. doi: 10.1038/nmeth.2448.
  Olivier, N., Keller, D., Gönczy, P., & Manley, S. (2013). Resolution doubling in 3D‐STORM imaging through improved buffers. PLoS One, 8, e69004. Available at http://www.ncbi.nlm.nih.gov/pubmed/23874848. doi: 10.1371/journal.pone.0069004.
  Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z., & Hagen, G. M. (2014). ThunderSTORM: A comprehensive ImageJ plug‐in for PALM and STORM data analysis and super‐resolution imaging. Bioinformatics, 30, 2389–2390. doi: 10.1093/bioinformatics/btu202.
  Parthasarathy, R. (2012). Rapid, accurate particle tracking by calculation of radial symmetry centers. Nature Methods, 9, 724–726. doi: 10.1038/nmeth.2071.
  Pertsinidis, A., Zhang, Y., & Chu, S. (2010). Subnanometre single‐molecule localization, registration and distance measurements. Nature, 466, 647–651. doi: 10.1038/nature09163.
  Quan, T., Li, P., Long, F., Zeng, S., Luo, Q., Hedde, P. N., … Huang, Z.‐L. (2010a). Ultra‐fast, high‐precision image analysis for localization‐based super resolution microscopy. Optics Express, 18, 11867–11876. doi: 10.1364/OE.18.011867.
  Quan, T., Zeng, S., & Huang, Z.‐L. (2010b). Localization capability and limitation of electron‐multiplying charge‐coupled, scientific complementary metal‐oxide semiconductor, and charge‐coupled devices for superresolution imaging. Journal of Biomedical Optics, 15, 66005. doi: 10.1117/1.3505017.
  Quan, T., Zhu, H., Liu, X., Liu, Y., Ding, J., Zeng, S., & Huang, Z.‐L. (2011). High‐density localization of active molecules using Structured Sparse Model and Bayesian Information Criterion. Optics Express, 19, 16963. doi: 10.1364/OE.19.016963.
  Ricci, M. A., Manzo, C., García‐Parajo, M. F., Lakadamyali, M., & Cosma, M. P. (2015). Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell, 160, 1145–1158. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25768910. doi: 10.1016/j.cell.2015.01.054.
  Rust, M. J., Bates, M., & Zhuang, X. W. (2006). Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793–795. Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700296/pdf/nihms‐88406.pdf. doi: 10.1038/nmeth929.
  Sage, D., Kirshner, H., Pengo, T., Stuurman, N., Min, J., Manley, S., & Unser, M. (2015). Quantitative evaluation of software packages for single‐molecule localization microscopy. Nature Methods, 12, 1–12. Available at http://www.ncbi.nlm.nih.gov/pubmed/26076424. doi: 10.1038/nmeth.3442.
  Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. Available at http://www.nature.com/doifinder/10.1038/nmeth.2089 [Accessed January 12, 2017]. doi: 10.1038/nmeth.2089.
  Smith, C. S., Joseph, N., Rieger, B., & Lidke, K. A. (2010). Fast, single‐molecule localization that achieves theoretically minimum uncertainty. Nature Methods, 7, 373–375. doi: 10.1038/nmeth.1449.
  Tokunaga, M., Imamoto, N., & Sakata‐Sogawa, K. (2008). Highly inclined thin illumination enables clear single‐molecule imaging in cells. Nature Methods, 5, 159–161. doi: 10.1038/nmeth1171.
  van de Linde, S., Loschberger, A., Klein, T., Heidbreder, M., Wolter, S., Heilemann, M., & Sauer, M. (2011). Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature Protocols, 6, 991–1009. Available at http://www.ncbi.nlm.nih.gov/pubmed/21720313. doi: 10.1038/nprot.2011.336.
  Wang, Y., Schnitzbauer, J., Hu, Z., Li, X., Cheng, Y., Huang, Z.‐L., & Huang, B. (2014). Localization events‐based sample drift correction for localization microscopy with redundant cross‐correlation algorithm. Optics Express, 22, 15982–15991. doi: 10.1364/OE.22.015982.
  Wolter, S., Löschberger, A., Holm, T., Aufmkolk, S., Dabauvalle, M.‐C., van de Linde, S., & Sauer, M. (2012a). rapidSTORM: Accurate, fast open‐source software for localization microscopy. Nature Methods, 9, 1040–1041. doi: 10.1038/nmeth.2224.
  Wolter, S., Loschberger, A., Holm, T., Aufmkolk, S., Dabauvalle, M. C., van de Linde, S., & Sauer, M. (2012b). rapidSTORM: Accurate, fast open‐source software for localization microscopy. Nature Methods, 9, 1040–1041 doi: 10.1038/nmeth.2224.
  York, A. G., Ghitani, A., Vaziri, A., Davidson, M. W., & Shroff, H. (2011). Confined activation and subdiffractive localization enables whole‐cell PALM with genetically expressed probes. Nature Methods, 8, 327–333 Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073501/pdf/nihms266587.pdf. doi: 10.1038/nmeth.1571.
  Zhu, L., Zhang, W., Elnatan, D., & Huang, B. (2012). Faster STORM using compressed sensing. Nature Methods, 9, 721–723. doi: 10.1038/nmeth.1978.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library