Statistical Methods for Genome‐Wide and Sequencing Association Studies of Complex Traits in Related Samples

Timothy A. Thornton1

1 Department of Biostatistics, University of Washington, Seattle, Washington
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 1.28
DOI:  10.1002/0471142905.hg0128s84
Online Posting Date:  January, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Genome‐wide association studies (GWAS) and sequencing studies are routinely conducted for the identification of genetic variants that are associated with complex traits. Many genetic studies for association mapping include related individuals. When relatives are included in an association analysis, familial correlations must be appropriately taken into account to ensure correct type I error and to increase power. This unit provides an overview of statistical methods that are available for GWAS and sequencing association studies of complex traits in samples with related individuals. © 2015 by John Wiley & Sons, Inc.

Keywords: relatedness; GWAS; sequence; association mapping; family data; complex traits; mixed models; genome‐wide association studies

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Key Concepts
  • Strategic Approach
  • Commentary
  • LITERATURE CITED
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

LITERATURE CITED
  Abecasis, G.R., Cardon, L.R., and Cookson, W.O. 2000. A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66:279‐292.
  Abney, M., Ober, C., and McPeek, M.S. 2002. Quantitative‐trait homozygosity and association mapping and empirical ge‐ nomewide significance in large, complex pedigrees: Fasting serum‐insulin level in the Hutterites. Am. J. Hum. Genet. 70:920‐934.
  Bourgain, C., Hoffjan, S., Nicolae, R., Newman, D., Steiner, L., Walker, K., Reynolds, R., Ober, C., and McPeek, M.S. 2004. Novel case‐control test in a founder population identifies P‐selectin as an atopy‐susceptibility locus. Am. J. Hum. Genet. 73:612‐626.
  Browning, S.R., Briley, J.D., Briley, L.P., Chandra, G., Charnecki, J.H., Ehm, M.G., Johansson, K.A., Jones, B.J., Karter, A.J., Yarnall, D.P., and Wagner, M.J. 2005. Case‐control single‐marker and haplotypic association analysis of pedigree data. Genet. Epidemiol. 28:110‐122.
  Chen, H., Meigs, J.B., and Dupuis, J. 2013. Sequence kernel association test for quantitative traits in family samples. Genet. Epidemiol. 37:196‐204.
  Clayton, D. 2008. Testing for association on the X chromosome. Biostatistics 9:593–600.
  Edwards, T. L. and Gao, X. 2012. Methods for detecting and correcting for population stratification. Curr. Protoc. Hum. Genet. 73:1.22.1‐1.22.14.
  Eu‐ahsunthornwattana, J., Miller, E.N., Fakiola, M., Jeronimo, S.M., Blackwell, J.M., Cordell, H.J., and Wellcome Trust Case Control Consortium 2. 2014. Comparison of methods to account for relatedness in genome‐wide association studies with family‐based data. PLoS Genet. 10:e1004445.
  Ewens, W.J., Spielman, R.S., Kaplan, N.L., Gao, X., Morris, R.W., and Martin, E.R. 2008. Disease associations and family‐based tests. Curr. Protoc. Hum. Genet. 58:1.12.1‐1.12.24.
  Feng, Z., Wong, W.W., Gao, X., and Schenkel, F. 2011. Generalized genetic association study with samples of related individuals. Ann. Appl. Stat. 5:2109‐2130.
  Jakobsdottir, J. and McPeek, M.S. 2013. MASTOR: Mixed‐model association mapping of quantitative traits in samples with related individuals. Am. J. Hum. Genet. 92:652‐666.
  Jiang D. and McPeek, M.S. 2014. Robust rare variant association testing for quantitative traits in samples with related individuals. Genet. Epidemiol. 38:10‐20.
  Kang, H.M., Sul, J.H., Zaitlen, N.A., Kong, S., Freimer, N.B., Sabatti, C., and Eskin, E. 2010. Variance component model to account for sample structure in genome‐wide association studies. Nat. Genet. 42:348‐354.
  Kazma, R. and Bailey, J.N. 2011. Population‐based and family‐based designs to analyze rare variants in complex diseases. Genet. Epidemiol. 35:S41‐S47.
  Lee, S., Emond, M.J., Bamshad, M.J., Barnes, K.C., Rieder, M.J., Nickerson, D.A., Christiani, D.C., Wurfel, M.M., and Lin, X. 2012. Optimal unified approach for rare‐variant association testing with application to small‐sample case‐control whole‐exome sequencing studies. Am. J. Hum. Genet. 91:224‐237.
  Li, B. and Leal, S.M. 2008. Methods for detecting associations with rare variants for common diseases: Application to the analysis of sequence data. Am. J. Hum. Genet. 83:311‐321.
  Lin, D.Y. and Tang, Z.Z. 2011. A general framework for detecting disease associations with rare variants in sequencing studies. Am. J. Hum. Genet. 89:354‐367.
  Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.I., and Heckerman, D. 2011. FaST linear mixed models for genome‐wide association studies. Nat. Methods 8:833‐835.
  Liu, D.J. and Leal, S.M. 2010. A novel adaptive method for the analysis of next‐generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet. 6:e1001156.
  Madsen, B.E., and Browning, S.R. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 5:e1000384.
  Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., Guttmacher, A.E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C.N., Slatkin, M., Valle, D., Whittemore, A.S., Boehnke, M., Clark, A.G., Eichler, E.E., Gibson, G., Haines, J.L., Mackay, T.F., McCarroll, S.A., and Visscher, P.M. 2009. Finding the missing heritability of complex diseases. Nature 461:747‐753.
  Mardis, E.R. 2008. Next‐generation DNA sequencing methods. Annu. Rev. Genom. Hum. Genet. 9:387‐402.
  O'Connor, T.D., Kiezun, A., Bamshad, M., Rich, S.S., Smith, J.D., Turner, E., NHLBIGO Exome Sequencing Project, ESP Population Genetics, Statistical Analysis Working Group, Leal, S.M., and Akey, J.M. 2013. Fine‐scale patterns of population stratification confound rare variant association tests. PLoS One 8:e65834.
  Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., and Reich, D. 2006. Principal components analysis corrects for stratification in genome‐wide association studies. Nat. Genet. 38:904‐909.
  Sasieni, P.D. 1997. From genotypes to genes: Doubling the sample size. Biometrics 53:1253‐1261.
  Schaid, D.J., McDonnell, S.K., Sinnwell, J.P., and Thibodeau, S.M. 2013. Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data. Genet. Epidemiol. 37:409‐418.
  Shendure, J. and Ji, H. 2008. Next‐generation DNA sequencing. Nat. Biotechnol. 26:1135‐1145.
  Slager, S.L. and Schaid, D. 2001. Evaluation of candidate genes in case‐control studies, a statistical method to account for related subjects. Am. J. Hum. Genet. 68:1457‐1462.
  Svishcheva, G.R., Axenovich, T.I., Belonogova, N.M., van Duijn, C.M., and Aulchenko, Y.S. 2012. Rapid variance components‐based method for whole‐genome association analysis. Nat. Genet. 44:1166‐1170.
  Teng, J. and Risch, N. 1999. The relative power of family‐based and case‐control designs for linkage disequilibrium studies of complex diseases. II. Individual genotyping. Genome Res. 9:234‐241.
  Thornton, T. and McPeek, M.S. 2007. Case‐control association testing with related individuals: A more powerful quasi‐likelihood score test. Am. J. Hum. Genet. 81:321‐337.
  Thornton, T. and McPeek, M.S. 2010. ROADTRIPS: case‐control association testing with partially or completely unknown population and pedigree structure. Am. J. Hum. Genet. 86:172‐184.
  Thornton, T., Zhang, Q., Cai, X., Ober, C., and McPeek, M.S. 2012. XM: Association testing on the X‐chromosome in case‐control samples with related individuals. Genet. Epidemiol. 36:438‐450.
  Visscher, P.M., Brown, M.A., McCarthy, M.I., and Yang, J. 2012. Five years of GWAS discovery. Am. J. Hum. Genet. 90:7‐24.
  Wang, Z. and McPeek, M.S. 2009. An incomplete‐data quasi‐likelihood approach to haplotype‐based genetic association studies on related individuals. J. Am. Statist. Assoc. 104:1251‐1260
  Wu, M.C., Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. 2011. Rare‐variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89:82‐93.
  Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M., and Price, A.L. 2014. Advantages and pitfalls in the application of mixed‐model association methods. Nat. Genet. 46:100‐106.
  Zheng, G., Joo, J., Zhang, C., and Geller, N.L. 2007. Testing association for markers on the X chromosome. Genet. Epidemiol. 31:834‐843.
  Zhou, X. and Stephens, M. 2012. Genome‐wide efficient mixed‐model analysis for association studies. Nat. Genet. 44:821‐824.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library