Microscopy and Image Analysis

George McNamara1, Michael Difilippantonio2, Thomas Ried2, Frederick R. Bieber3

1 Biomedical Consultant, Baltimore, Maryland, 2 National Cancer Institute, National Institutes of Health, Bethesda, 3 Brigham and Women's Hospital, Boston, Massachusetts
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 4.4
DOI:  10.1002/cphg.42
Online Posting Date:  July, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy—we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc.

Keywords: light microscopy; digital imaging; fluorescence in situ hybridization; functional genomics

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Nano, Micro, And Macro Scales
  • Historical Foundations of Microscopy
  • Microscopy in Modern Human Genetics
  • Types of Microscopy
  • Microscope Objectives and Eyepiece Lenses
  • Fluorescence Microscopy
  • Light Sources
  • From Fluorescent Dyes, Qdots, and Polymers to Fluorescent Proteins
  • Image Acquisition
  • Conclusions
  • Supporting Materials
  • Acknowledgments
  • Conflict of Interest Statement
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Aikens, R. (1990). CCD cameras for video microscopy. In B. Herman & K. Jacobson (Eds.), Optical microscopy for biology (pp. 85‐110). New York: John Wiley & Sons.
  Allen, R. D., Allen, N. S., & Travis, J. L. (1981b). Video‐enhanced contrast, differential interference contrast (AVEC‐DIC) microscopy: A new method capable of analyzing microtubule‐related motility in the reticulopodial network of Allogromia laticollaris. Cell Motility, 1, 291–302. doi: 10.1002/cm.970010303.
  Allen, R. D., David, G. B., & Nomarski, G. (1969). The Zeiss‐Nomarski differential interference equipment for transmitted‐light microscopy. Zeitschrift fur Wissenschaftliche Mikroskopie und Mikroskopische Technik, 69, 193–221.
  Allen, R. D., Travis, J. L., Allen, N. S., & Yilmaz, H. (1981a). Video‐enhanced contrast polarization (AVEC‐POL) microscopy: A new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris. Cell Motility, 1, 275–289. doi: 10.1002/cm.970010302.
  Amos, W. B., & White, J. G. (2003). How the confocal laser scanning microscope entered biological research. Biology of the Cell, 95, 335–342. doi: 10.1016/S0248‐4900(03)00078‐9.
  Arnold, N., Bhatt, M., Ried, T., Wienberg, J., & Ward, D. C. (1992). Fluorescence in situ hybridization on banded chromosomes. In C. Kessler (Ed.), Techniques and methods in molecular biology: Nonradioactive labeling and detection of biomolecules (pp. 324‐326). Heidelberg: Springer‐Verlag.
  Axelrod, D. (2003). Total internal reflection fluorescence microscopy in cell biology. Methods in Enzymology, 361, 1–33. doi: 10.1016/S0076‐6879(03)61003‐7.
  Axelrod, D. (2013). Evanescent excitation and emission in fluorescence microscopy. Biophysical Journal, 104, 1401–1409. doi: 10.1016/j.bpj.2013.02.044.
  Axelrod, D., Burghardt, T. P., & Thompson, N. L. (1984). Total internal reflection fluorescence. Annual Review of Biophysics and Bioengineering, 13, 247–268. doi: 10.1146/annurev.bb.13.060184.001335.
  Azaripour, A., Lagerweij, T., Scharfbillig, C., Jadczak, A. E., Willershausen, B., & Van Noorden, C. J. (2016). A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Progress in Histochemistry and Cytochemistry, 51, 9–23. doi: 10.1016/j.proghi.2016.04.001.
  Azofeifa, J., Fauth, C., Kraus, J., Maierhofer, C., Langer, S., Bolzer, A., … Speicher, M. R. (2000). An optimized probe set for the detection of small interchromosomal aberrations by use of 24‐color FISH. American Journal of Human Genetics, 66, 1684–1688. doi: 10.1086/302875.
  Bajar, B. T., Wang, E. S., Lam, A. J., Kim, B. B., Jacobs, C. L., Howe, E. S., … Chu, J. (2016). Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Scientific Reports, 6, 20889. doi: 10.1038/srep20889.
  Baldini, A., & Ward, D. C. (1991). In situ hybridization of human chromosomes with Alu‐PCR products: A simultaneous karyotype for gene mapping studies. Genomics, 9, 770–774. doi: 10.1016/0888‐7543(91)90374‐N.
  Barch, M., Knutsen, T., & Spurbeck, J. (Eds.). (1997). The AGT cytogenetics laboratory manual. New York: Raven Press.
  Barlow, C., Hirotsune, S., Paylor, R., Liyanage, M., Eckhaus, M., Collins, F., … Wynshaw‐Boris, A. (1996). Atm‐deficient mice: A paradigm of ataxia telangiectasia. Cell, 86, 159–171. doi: 10.1016/S0092‐8674(00)80086‐0.
  Barone‐Nugent, E. D., Barty, A., & Nugent, K. A. (2002). Quantitative phase‐amplitude microscopy I: Optical microscopy. Journal of Microscopy, 206, 194–203. doi: 10.1046/j.1365‐2818.2002.01027.x.
  Barykina, N. V., Subach, O. M., Doronin, D. A., Sotskov, V. P., Roshchina, M. A., Kunitsyna, T. A., … Enikolopov, G. N. (2016). A new design for a green calcium indicator with a smaller size and a reduced number of calcium‐binding sites. Scientific Reports, 6, 34447. doi: 10.1038/srep34447.
  Bindels, D. S., Haarbosch, L., van Weeren, L., Postma, M., Wiese, K. E., Mastop, M., … Gadella, T. W. Jr. (2017). mScarlet: A bright monomeric red fluorescent protein for cellular imaging. Nature Methods, 14, 53–56. doi: 10.1038/nmeth.4074.
  Blennow, E., Nielson, K. B., Telenius, H., Carter, N. P., Kristoffersson, U., Holmberg, E., … Nordenskjøld, M. (1995). Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization. American Journal of Medical Genetics, 55, 85–94. doi: 10.1002/ajmg.1320550122.
  Boden, J., Wei, J., McNamara, G., Layman, H., Abdulreda, M., Andreopoulos, F., & Webster, K. A. (2012). Whole‐mount imaging of the mouse hindlimb vasculature using the lipophilic carbocyanine dye DiI. Biotechniques (Rapid Dispatches), 53, 1–4. doi: 10.2144/000113907.
  Boyle, A. L., Ballard, S. G., & Ward, D. C. (1990). Differential distribution of long and short interspersed element sequences in the mouse genome: Chromosome karyotyping by fluorescence in situ hybridization. Proceedings of the National Academy of Sciences of the United States of America, 87, 7757–7761. doi: 10.1073/pnas.87.19.7757.
  Brink, A. A., Wiegant, J. C., Szuhai, K., Tanke, H. J., Kenter, G. G., Fleuren, G. J., … Raap, A. K. (2002). Simultaneous mapping of human papillomavirus integration sites and molecular karyotyping in short‐term cultures of cervical carcinomas by using 49‐color combined binary ratio labeling fluorescence in situ hybridization. Cancer Genetics and Cytogenetics, 134, 145–150. doi: 10.1016/S0165‐4608(01)00620‐3.
  Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016. doi: 10.1126/science.281.5385.2013.
  Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2002). A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 99, 7877–7882. doi: 10.1073/pnas.082243699.
  Carpenter, A. E., & Sabatini, D. M. (2004). Systematic genome‐wide screens of gene function. Nature Reviews Genetics, 5, 11–22. doi: 10.1038/nrg1248.
  Carter, K. C., Bowman, D., Carrington, W., Fogarty, K., McNeil, J. A., Fay, F. S., & Lawrence, J. B. (1993). A three‐dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science, 259, 1330–1336. doi: 10.1126/science.8446902.
  Caspersson, T., Farber, S., Foley, G. E., Kudynowski, J., Modest, E. J., Simonsson, E., … Zech, L. (1968). Chemical differentiation along metaphase chromosomes. Experimental Cell Research, 49, 219–222. doi: 10.1016/0014‐4827(68)90538‐7.
  Caspersson, T. O. (1979). Quantitative tumor cytochemistry‐G.H.A. clowes memorial lecture. Cancer Research, 39, 2341–2345.
  Caspersson, T. O. (1989). The William Allan memorial award address: The background for the development of the chromosome banding techniques. American Journal of Human Genetics, 44, 441–451.
  Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science, 263, 802–805. doi: 10.1126/science.8303295.
  Chan, W. C. W., & Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 2016–2018. doi: 10.1126/science.281.5385.2016.
  Chen, F., Tillberg, P. W., & Boyden, E. S. (2015). Optical imaging. Expansion microscopy. Science, 347, 543–548. doi: 10.1126/science.1260088.
  Chen, F., Wassie, A. T., Cote, A. J., Sinha, A., Alon, S., Asano, S., … Boyden, E. S. (2016). Nanoscale imaging of RNA with expansion microscopy. Nature Methods, 13, 679–684. doi: 10.1038/nmeth.3899.
  Cherukuri, T. K., Tsyboulski, D. A., & Weisman, R. B. (2012). Length‐ and defect‐dependent fluorescence efficiencies of individual single‐walled carbon nanotubes. ACS Nano, 6, 843–850. doi: 10.1021/nn2043516.
  Cherukuri, P., Bachilo, S. M., Litovsky, S. H., & Weisman, R. B. (2004). Near‐infrared fluorescence microscopy of single‐walled carbon nanotubes in phagocytic cells. Journal of the American Chemical Society, 126, 15638–15639. doi: 10.1021/ja0466311.
  Cheung, M. C., Evans, J. G., McKenna, B., & Ehrlich, D. J. (2011). Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel. Cytometry Part A, 79, 920–932. doi: 10.1002/cyto.a.21111.
  Cheung, M. C., LaCroix, R., McKenna, B. K., Liu, L., Winkelman, J., & Ehrlich, D. J. (2013). Intracellular protein and nucleic acid measured in eight cell types using deep‐ultraviolet mass mapping. Cytometry Part A, 83, 540–551. doi: 10.1002/cyto.a.22277.
  Chroma Technology Corp. (2017). 5‐Channel fluorescence imaging simplified ‐ reliable multiplexing for the non‐specialist. Chroma Tech Corp in collaboration with BD Biosciences. Retrieved from https://www.chroma.com/sites/default/files/5‐CHANNEL%20FLUORESCENCE%20IMAGING%20SIMPLIFIED%20‐%20Reliable%20Multiplexing%20for%20the%20Non‐Specialist_New.pdf.
  Chowdhary, B., Raudsepp, T., Fronicke, L., & Scherthan, H. (1998). Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo‐FISH. Genome Research, 8, 577–589. doi: 10.1101/gr.8.6.577.
  Chozinski, T. J., Halpern, A. R., Okawa, H., Kim, H. J., Tremel, G. J., Wong, R. O., & Vaughan, J. C. (2016). Expansion microscopy with conventional antibodies and fluorescent proteins. Nature Methods, 13, 485–488. doi: 10.1038/nmeth.3833.
  Clark, G., & Kasten, F. H. (1983). History of Staining. Baltimore: Williams & Wilkins.
  Cody, S. H., Xiang, S. D., Layton, M. J., Handman, E., Lam, M. H., Layton, J. E., … Heath, J. K. (2005). A simple method allowing DIC imaging in conjunction with confocal microscopy. Journal of Microscopy, 217, 265–274. doi: 10.1111/j.1365‐2818.2005.01452.x.
  Coleman, A. E., Schröck, E., Weaver, Z., du Manoir, S., Yang, F., Ferguson‐Smith, M. A., … Janz, S. (1997). Previously hidden chromosome aberrations in T(12;15)‐positive BALB/c plasmacytomas uncovered by multicolor spectral karyotyping. Cancer Research, 57, 4585–4592.
  Contag, C. H., Contag, P. R., Mullins, J. I., Spilman, S. D., Stevenson, D. K., & Benaron, D. A. (1995). Photonic detection of bacterial pathogens in living hosts. Molecular Microbiology, 18, 593–603. doi: 10.1111/j.1365‐2958.1995.mmi_18040593.x.
  Contag, C. H., Spilman, S. D., Contag, P. R., Oshiro, M., Eames, B., Dennery, P., … Benaron, D. A. (1997). Visualizing gene expression in living mammals using a bioluminescent reporter. Photochemistry and Photobiology, 66, 523–531. doi: 10.1111/j.1751‐1097.1997.tb03184.x.
  Coons, A. H. (1961). The beginnings of immunofluorescence. Journal of Immunology, 87, 499–503.
  Coons, A. H., & Kaplan, M. H. (1950). Localization of antigen in tissue cells. II. Improvements in a method for the detection of antigen by means of a fluorescent antibody. The Journal of Experimental Medicine, 91, 1–13. doi: 10.1084/jem.91.1.1.
  Coons, A. H., Creech, H. J., & Jones, R. N. (1941). Immunological properties of an antibody containing a fluorescent group. Experimental Biology and Medicine, 47, 200–202. doi: 10.3181/00379727‐47‐13084P.
  Coons, A. H., Creech, H. J., Jones, R. N., & Berliner, E. (1942). The demonstration of pneumococcal antigen in tissue by the use of a fluorescent antibody. Journal of Immunology, 45, 159–170.
  Cranfill, P. J., Sell, B. R., Baird, M. A., Allen, J. R., Lavagnino, Z., de Gruiter, H. M., … Piston, D. W. (2016). Quantitative assessment of fluorescent proteins. Nature Methods, 13, 557–562. doi: 10.1038/nmeth.3891.
  Cremer, T., Landegent, J. E., Bruckner, A., Scholl, H. P., Schardin, M., Hager, H.‐D., … van der Ploeg, M. (1986). Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and nonradioactive in situ hybridization techniques: Diagnosis of trisomy 18 with probe L1.84. Human Genetics, 74, 346–352. doi: 10.1007/BF00280484.
  Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two‐photon laser scanning fluorescence microscopy. Science, 248, 73–76. doi: 10.1126/science.2321027.
  Dent, J. A., Polson, A. G., & Klymkowsky, M. W. (1989). A whole‐ mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development, 105, 61–74.
  Devilee, P., Thierry, R. F., Kievits, T., Kolluri, R., Hopman, A. H. N., Willard, H. F., … Cornelisse, C. J. (1988). Detection of chromosome aneuploidies in interphase nuclei from human primary breast tumors using chromosome specific repetitive DNA probes. Cancer Research, 48, 5825–5830.
  DeVries, S., Gray, J. W., Pinkel, D., Waldman, F. M., & Sudar, D. (1995). Comparative genomic hybridization. Current Protocols in Human Genetics. 6, 4.6.1–4.6.18. doi: 10.1002/0471142905.hg0406s06.
  Diaspro, A. (Ed). (2001). Confocal and two‐photon microscopy; foundations, applications and advances. New York: Wiley‐Liss.
  Dickinson, M. E., Bearman, G., Tille, S., Lansford, R., & Fraser, S. E. (2001). Multi‐spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. BioTechniques, 31, 1272, 1274–6, 1278.
  Dodt, H. U. (2015). Microscopy. The superresolved brain. Science, 347, 474–475. doi: 10.1126/science.aaa5084.
  Dodt, H.‐U., & Zieglgansberger, W. (1994). Infrared videomicroscopy: A new look at neuronal structure and function. Trends in Neurosciences, 17, 453–458. doi: 10.1016/0166‐2236(94)90130‐9.
  Dodt, H. U., Saghafi, S., Becker, K., Jährling, N., Hahn, C., Pende, M., … Niendorf, A. (2015). Ultramicroscopy: Development and outlook. Neurophotonics, 2, 041407. doi: 10.1117/1.NPh.2.4.041407.
  Dodt, H.‐U., Leischner, U., Schierloh, A., Jährling, N., Mauch, C. P., Deininger, K., … Becker, K. (2007). Ultramicroscopy: Three‐dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods, 4, 331–336. doi: 10.1038/nmeth1036.
  Egger, M. D., & Petran, M. (1967). New reflected‐light microscope for viewing unstained brain and ganglion cells. Science, 157, 305–307. doi: 10.1126/science.157.3786.305.
  Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. “[Investigations on the theory of Brownian Movement]”. Annalen der Physik, 322, 549–560. doi:10.1002/andp.19053220806.
  Engels, H., Ehrbrecht, A., Zahn, S., Bosse, K., Vrolijk, H., White, S., … Raap, A. K. (2003). Comprehensive analysis of human subtelomeres with combined binary ratio labelling fluorescence in situ hybridisation. European Journal of Human Genetics, 11, 643–651. doi: 10.1038/sj.ejhg.5201028.
  Evanko, D. (2012, December 12). Our reporting standards for fluorescent proteins ‐ Feedback wanted [Web log post]. Retrieved from http://blogs.nature.com/methagora/2012/12/our‐reporting‐standards‐for‐fluorescent‐proteins‐feedback‐wanted.html.
  Farkas, D. L., & Becker, D. (2001). Applications of spectral imaging: Detection and analysis of human melanoma and its precursors. Pigment Cell Research, 14, 2–8. doi: 10.1034/j.1600‐0749.2001.140102.x.
  Feulgen, R., & Rossenbeck, H. (1924). Mikroskopisch‐chemischer nachweis einer nucleisäure vom typus der thymonucleinsäure und die darauf beruhende elektive Färburg von Zellkernen in mikroskopischen präparaten. [Microscopic chemical detection of a nucleic acid of the thymonucleic acid family and the elective dye of cell nuclei based on microscopic preparations]. Hoppe‐Seyler's Zeitschrift fur physiologische Chemie, 135, 203–248. doi: 10.1515/bchm2.1924.135.5‐6.203.
  Fleischmann, M., Bloch, W., Kolossov, E., Andressen, C., Muller, M., Brem, G., … Fleischmann, B. K. (1998). Cardiac specific expression of the green fluorescent protein during early murine embryonic development. FEBS Letters, 440, 370–376. doi: 10.1016/S0014‐5793(98)01476‐8.
  Fong, A., & Levenson, R. M. (2016). MUSE: Slide‐free microscopy. Optics & Photonics News, June 2016, 16‐18.
  Forozan, F., Karhu, R., Kononen, J., Kallioniemi, A., & Kallioniemi, O.‐P. (1997). Genome screening by comparative genomic hybridization. Trends in Genetics, 13, 405–409. doi: 10.1016/S0168‐9525(97)01244‐4.
  Förster, T. (1965). Delocalized excitation and excitation transfer. In O. Sinanoglu (Ed.), Modern quantum chemistry part III: Action of light and organic crystals (pp. 93‐137). New York: Academic Press.
  Frieda, K. L., Linton, J. M., Hormoz, S., Choi, J., Chow, K. K., Singer, Z. S., … Cai, L. (2017). Synthetic recording and in situ readout of lineage information in single cells. Nature, 541, 107–111. doi: 10.1038/nature20777.
  Frommer, W. (2016). Biosensor. Retrieved from https://codex.dpb.carnegiescience.edu/db/biosensor.
  Fronicke, L., & Scherthan, H. (1997). Zoo‐fluorescence in situ hybridization analysis of human and Indian muntjac karyotypes (Muntiacus muntjac vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments. Chromosome Research, 5, 254–261. doi: 10.1023/B:CHRO.0000032298.22346.46.
  Fuchs, E., Jaffe, J., Long, R., & Azam, F. (2002). Thin laser light sheet microscope for microbial oceanography. Optics Express, 10, 145–154. doi: 10.1364/OE.10.000145.
  Garfield, S. (2001). Mauve: How one man invented a color that changed the world. New York: W.W. Norton & Company.
  Garini, Y., Gil, A., Bar‐Am, I., Cabib, D., & Katzir, N. (1999). Signal to noise analysis of multiple color fluorescence imaging microscopy. Cytometry, 35, 214–226. doi: 10.1002/(SICI)1097‐0320(19990301)35:3%3c214::AID‐CYTO4%3e3.0.CO;2‐D.
  Garini, Y., Vermolen, B. J., & Young, I. T. (2005). From micro to nano: Recent advances in high‐resolution microscopy. Current Opinion in Biotechnology, 16, 3–12. doi: 10.1016/j.copbio.2005.01.003.
  Garini, Y., Macville, M., du Manoir, S., Buckwald, R. A., Lavi, M., Katzir, N., … Ried, T. (1996). Spectral karyotyping. Bioimaging, 4, 65–72. doi: 10.1002/1361‐6374(199606)4:2%3c65::AID‐BIO4%3e3.3.CO;2‐4.
  GE Healthcare Life Sciences. (2017). Imaging Principles and Methods. Retrieved from http://www.gelifesciences.com/file_source/GELS/Service%20and%20Support/Documents%20and%20Downloads/Handbooks/pdfs/Molecular%20Imaging.pdf.
  Geertsema, H., & Ewers, H. (2016). Expansion microscopy passes its first test. Nature Methods, 13, 481–482. doi: 10.1038/nmeth.3872.
  Ghadimi, B. M., Schröck, E., Walker, R. L., Wangsa, D., Jauho, A., Melzer, P., & Ried, T. (1999). Specific chromosomal aberrations and amplification of AIB1 nuclear receptor coactivator gene in pancreatic carcinomas. The American Journal of Pathology, 154, 525–536. doi: 10.1016/S0002‐9440(10)65298‐4.
  Ghosh, S., Yu, C. L., Ferraro, D. J., Sudha, S., Pal, S. K., Schaefer, W. F., … Ramaswamy, S. (2016). Blue protein with red fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 113, 11513–11518. doi: 10.1073/pnas.1525622113.
  Giordano, S. J., Yoo, M., Ward, D. C., Bhatt, M., Overhauser, J., & Steggles, A. W. (1993). The human cytochrome b5 gene and two of its pseudogenes are located on chromosomes 18q23, 14q31‐32.1 and 20p11.2, respectively. Human Genetics, 92, 615–618. doi: 10.1007/BF00420948.
  Goldman, R. D., & Spector, D. K. (Eds.). (2004). Live cell imaging. Cold Spring Harbor, NY: Cold Spring Harbor Press.
  Greenspan, H., Rothmann, C., Cycowitz, T., Nissan, Y., Cohen, A. M., & Malik, Z. (2002). Classification of lymphoproliferative disorders by spectral imaging of the nucleus. Histology and Histopathology, 17, 767–773.
  Grimm, J. B., English, B. P., Choi, H., Muthusamy, A. K., Mehl, B. P., Dong, P., … Lavis, L. D. (2016). Bright photoactivatable fluorophores for single‐molecule imaging. Nature Methods, 13, 985–988. doi: 10.1038/nmeth.4034.
  Grimm, J. B., English, B. P., Chen, J., Slaughter, J. P., Zhang, Z., Revyakin, A., … Lavis, L. D. (2015). A general method to improve fluorophores for live‐cell and single‐molecule microscopy. Nature Methods, 12, 244–250, 3 p following 250. doi: 10.1038/nmeth.3256.
  Haines, J. L., Korf, B. R., Morton, C. C., Seidman, C. E., Seidman, C. E., & Smith, D. R. (Eds.) (2017). Current Protocols in Human Genetics. Hoboken, NJ: John Wiley & Sons.
  Harris, H. (1995). The cells of the body. A history of somatic cell genetics. Cold Spring Harbor, NY: Cold Spring Harbor Press.
  Hasan, M. T., Friedrich, R. W., Euler, T., Larkum, M. E., Giese, G. G., Both, M., … Denk, W. (2004). Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biology, 2, E163. doi: 10.1371/journal.pbio.0020163.
  Haugland, R. (2004). The handbook — a guide to fluorescent probes and labeling technologies. Eugene, OR: Molecular Probes (Invitrogen).
  Haugland, R. P. (1996). Handbook of fluorescent probes and research chemicals. Eugene, OR: Molecular Probes.
  Heim, R., Prasher, D. C., & Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 91, 12501–12504. doi: 10.1073/pnas.91.26.12501.
  Holzwarth, G., Hill, D. B., & McLaughlin, E. B. (2000). Polarization‐modulated differential‐interference contrast microscopy with a variable retarder. Applied Optics, 39, 6268–6294. doi: 10.1364/AO.39.006288.
  Holzwarth, G., Webb, S. C., Kubinski, D. J., & Allen, N. S. (1997). Improving DIC microscopy with polarization modulation. Journal of Microscopy, 188, 249–254. doi: 10.1046/j.1365‐2818.1997.2500807.x.
  Hooke, R. (1665). Micrographia. Or, Some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. London: Royal Society.
  Hoppe, A. D., Shorte, S. L., Swanson, J. A., & Heintzmann, R. (2008). Three‐dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells. Biophysical Journal, 95, 400–418. doi: 10.1529/biophysj.107.125385.
  Hsu, T. C. (1952). Mammalian chromosomes in vitro. I. The karyotype of man. The Journal of Heredity, 43, 167–172. doi: 10.1093/oxfordjournals.jhered.a106296.
  Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., & Stelzer, E. H. (2004). Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007–1009. doi: 10.1126/science.1100035.
  Inoué, S. (1981). Video image processing greatly enhances contrast, quality, and speed in polarization‐based microscopy. The Journal of Cell Biology, 89, 346–356. doi: 10.1083/jcb.89.2.346.
  Inoué, S., & Dan, K. (1951). Birefringence of the dividing cell. Journal of Morphology, 89, 423. doi: 10.1002/jmor.1050890304.
  Inoué, S., & Spring, K. R. (1997). Video microscopy (2nd ed.). New York: Plenum.
  Ishikawa‐Ankerhold, H. C., Ankerhold, R., & Drummen, G. P. (2012). Advanced fluorescence microscopy techniques‐FRAP, FLIP, FLAP, FRET and FLIM. Molecules, 17, 4047–4132. doi: 10.3390/molecules17044047.
  Jaganath, R., Angeletti, C., Levenson, R., & Rimm, D. L. (2004). Diagnostic classification of urothelial cells in urine cytology specimens using exclusively spectral information. Cancer, 102, 186–191. doi: 10.1002/cncr.20302.
  Jaiswal, J. K., & Simon, S. M. (2003). Total internal reflection fluorescence microscopy for high‐resolution imaging of cell‐surface events. Current Protocols in Cell Biology, 20, 4.12.1–4.12.15. doi: 10.1002/0471143030.cb0412s20.
  James, J., & Tanke, H. (1991). Biomedical light microscopy. Boston: Kluwer Academic Publishers.
  Jardine, L. (2004). The curious life of Robert Hooke: The man who measured London. New York: HarperCollins.
  Jares‐Erijman, E. A., & Jovin, T. M. (2003). FRET imaging. Nature Biotechnology, 21, 1387–1395. doi: 10.1038/nbt896.
  Jena, P. V., Shamay, Y., Shah, J., Roxbury, D., Paknejad, N., & Heller, D. A. (2016). Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. Carbon, 97, 99–109. doi: 10.1016/j.carbon.2015.08.024.
  Jentsch, I., Geigl, J., Klein, C. A., & Speicher, M. R. (2003). Seven‐fluorochrome mouse M‐FISH for high‐resolution analysis of interchromosomal rearrangements. Cytogenetic and Genome Research, 103, 84–88. doi: 10.1159/000076294.
  Johnson, C. V., McNeil, J. A., Carter, K. C., & Lawrence, J. B. (1991). A simple, rapid technique for precise mapping of multiple sequences in two colors using a single optical filter set. Genetic Analysis, Techniques and Applications, 8, 24–35. doi: 10.1016/1050‐3862(91)90052‐S.
  Kachar, B. (1985). Asymmetric illumination contrast: A method of image formation for video light microscopy. Science, 227, 766–768. doi: 10.1126/science.3969565.
  Kallioniemi, A., Kallioniemi, O.‐P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F., & Pinkel, D. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258, 818–821. doi: 10.1126/science.1359641.
  Kapitza, H.‐G. (1996). Modern microscope objectives. Proceedings of the Royal Society of Medicine, 31, 24–27.
  Karhu, R., Ahlstedt‐Soini, M., Bittner, M., Meltzer, P., Trent, J. M., & Isola, J. J. (2001). Chromosome arm‐specific multicolor FISH. Genes Chromosomes Cancer, 30, 105–109. doi: 10.1002/1098‐2264(2000)9999:9999%3c::AID‐GCC1068%3e3.0.CO;2‐9.
  Keller, P. J., Schmidt, A. D., Wittbrodt, J., & Stelzer, E. H. (2008). Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science, 322, 1065–1069. doi: 10.1126/science.1162493.
  Knoll, J. H. M., & Lichter, P. (2005). In situ hybridization to metaphase chromosomes and interphase nuclei. Current Protocols in Human Genetics, 45, 4.3.1–4.3.31. doi: 10.1002/0471142905.hg0403s45.
  Kohler, A. (2016). August Kohler. Retrieved from http://micro.magnet.fsu.edu/optics/timeline/people/kohler.html.
  Kononen, J., Bubendorf, L., Kallioniemi, A., Bärlund, M., Schraml, P., Leighton, S., … Kallioniemi, O. P. (1998). Tissue microarrays for high‐throughput molecular profiling of tumor specimens. Nature Medicine, 4, 844–847. doi: 10.1038/nm0798‐844.
  Ku, T., Swaney, J., Park, J. Y., Albanese, A., Murray, E., Cho, J. H., … Chung, K. (2016). Multiplexed and scalable super‐resolution imaging of three‐dimensional protein localization in size‐adjustable tissues. Nature Biotechnology, 34, 973–981. doi: 10.1038/nbt.3641.
  Labas, Y. A., Gurskaya, N. G., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Lukyanov, S. A., & Matz, M. V. (2002). Diversity and evolution of the green fluorescent protein family. Proceedings of the National Academy of Sciences of the United States of America, 99, 4256–4261. doi: 10.1073/pnas.062552299.
  Lambert, T., & Thorn, K. (2016). Interactive visualization fluorescent protein properties. San Francisco: University of California. Retrieved from http://nic.ucsf.edu/FPvisualization
  Langer‐Safer, P. R., Levine, M., & Ward, D. C. (1982). Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 79, 4381–4385. doi: 10.1073/pnas.79.14.4381.
  Lawrence, J. B., Singer, R. H., & Marselle, L. M. (1989). Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell, 57, 493–502. doi: 10.1016/0092‐8674(89)90924‐0.
  Lawrence, J. B., Carter, K. C., & Xing, X. (1993). Probing functional organization within the nucleus: Is genome structure integrated with RNA metabolism? Cold Spring Harbor Symposia on Quantitative Biology, 58, 807–818. doi: 10.1101/SQB.1993.058.01.088.
  Lee, E., Kim, H. J., & Sun, W. (2016). See‐through technology for biological tissue: 3‐dimensional visualization of macromolecules. International Neurourology Journal, 20(Suppl 1), S15‐S22. doi: 10.5213/inj.1632630.315.
  Lee, C., Rens, W. and Yang, F. (2000). Multicolor fluorescence in situ hybridization (FISH) approaches for simultaneous analysis of the entire human genome. Current Protocols in Human Genetics. 24, 4.9.1–4.9.11. doi: 10.1002/0471142905.hg0409s24.
  Leewenhoeck, A. (1683). An abstract of a letter from Mr. Anthony Leewenhoeck writ to sir C. W. Jan. 22. 1682/3 from Delft. Philosophical Transactions, 13, 74–81. doi: 10.1098/rstl.1683.0013.
  Lejeune, J., Gautier, M., & Turpin, R. (1959). Etude des chromosomes somatiques de neuf enfants mongoliens. [Study of somatic chromosomes nine‐Mongolian children]. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (Paris), 248, 1721–1722.
  Levesque, M. J., & Raj, A. (2013). Single‐chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nature Methods, 10, 246–248. Erratum in: Nature Methods, 10, 445. doi: 10.1038/nmeth.2372.
  Li, Y., Song, Y., Zhao, L., Gaidosh, G., Laties, A. M., & Wen, R. (2008). Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nature Protocols, 3, 1703–1708. doi: 10.1038/nprot.2008.172.
  Lichter, P., & Ward, D. C. (1990). Is non‐isotopic in situ hybridization finally coming of age? Nature, 345, 93–95. doi: 10.1038/345093a0.
  Lichter, P., Chang Tang, C.‐J., Call, K., Hermanson, G., Evans, G. A., Housman, D., & Ward, D. C. (1990). High resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science, 247, 64–69. doi: 10.1126/science.2294592.
  Lichter, J. B., Difilippantonio, M., Wu, J., Miller, D., Ward, D. C., Goodfellow, P. J., & Kidd, K. K. (1992). Localization of the gene for MEN 2A. Henry Ford Hospital Medical Journal, 40, 199–204.
  Lin, B., Urayama, S., Saroufeem, R. M., Matthews, D. L., & Demos, S. G. (2009). Real‐time microscopic imaging of esophageal epithelial disease with autofluorescence under ultraviolet excitation. Optics Express, 17, 12502–12509. doi: 10.1364/OE.17.012502.
  Liu, P., Ahmed, S., & Wohland, T. (2008). The F‐techniques: Advances in receptor protein studies. Trends in Endocrinology and Metabolism, 19, 181–190. doi: 10.1016/j.tem.2008.02.004.
  Liyanage, M., Coleman, C., du Manoir, S., Veldman, T., McCormack, S., Dickson, R. B., … Ried, T. (1996). Multicolour spectral karyotyping of mouse chromosomes. Nature Genetics, 14, 312–315. doi: 10.1038/ng1196‐312.
  Macville, M. V., Van Der Laak, J. A., Speel, E. J., Katzir, N., Garini, Y., Soenksen, D., … Ried, T. (2001). Spectral imaging of multi‐color chromogenic dyes in pathological specimens. Analytical Cellular Pathology, 22, 133–142. doi: 10.1155/2001/740909.
  Manuelidis, L. (1985). Individual interphase chromosome domains revealed by in situ hybridization. Human Genetics, 71, 288–293. doi: 10.1007/BF00388453.
  Manuelidis, L., Langer‐Safer, P. R., & Ward, D. C. (1982). High‐resolution mapping of satellite DNA using biotin‐labeled DNA probes. The Journal of Cell Biology, 95, 619–625. doi: 10.1083/jcb.95.2.619.
  Marrack, J. (1934). Nature of antibodies. Nature, 133, 292. doi: 10.1038/133292b0.
  Mason, W. (1993). Fluorescent and luminescent probes for biological activity: A practical guide to technology for quantitative real‐time analysis. San Diego: Academic Press.
  Matsumoto, B. (Ed). (2002). Cell biological applications of confocal microscopy (2nd ed.). New York: Academic Press.
  Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., & Lukyanov, S. A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology, 17, 969–973. Erratum 17. (1227). doi: 10.1038/13657.
  McConnell, G., Trägårdh, J., Amor, R., Dempster, J., Reid, E., & Amos, W. B. (2016). A novel optical microscope for imaging large embryos and tissue volumes with sub‐cellular resolution throughout. Elife, 5, pii: e18659. doi: 10.7554/eLife.18659.
  McNamara, G. (2005). Multi‐Probe Microscopy. Retrieved from http://home.earthlink.net/˜mpmicro.
  McNamara, G. (2016). GEOMCNAMARA (updates of tables). Retrieved from http://www.GeoMcNamara.com.
  McNamara, G., & Boswell, C. A. (2007). A thousand proteins of light: 15 years of advances in fluorescent proteins. In A. Méndez‐Vilas & J. Díaz (Eds.), Modern research and educational topics in microscopy, Vol. 3, (pp. 287‐296). Badajoz, Spain: FORMATEX Microscopy.
  McNamara, G., Difilippantonio, M. J., & Ried, T. (2005). Microscopy and image analysis. Current Protocols in Human Genetics, 46, 4.4.1‐4.4.34. doi: 10.1002/0471142905.hg0404s46.
  McNamara, G., Yanai, A., Khankaldyyan, V., Laug, W. E., Boden, J., Webster, K., … Wen, R. (2014). Low magnification confocal microscopy of tumor angiogenesis. Methods in Molecular Biology, 1075, 149–175. doi: 10.1007/978‐1‐60761‐847‐8_6.
  Minsky, M. (1957). Microscopy apparatus. U.S. Patent 3013467.
  Minsky, M. (1988). Memoir on inventing the confocal scanning microscope. Scanning, 10, 128–138. doi: 10.1002/sca.4950100403.
  Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., & Tsien, R. Y. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 388, 882–887. doi: 10.1038/42264.
  Moffitt, J. R., Hao, J., Wang, G., Chen, K. H., Babcock, H. P., & Zhuang, X. (2016a). High‐throughput single‐cell gene‐expression profiling with multiplexed error‐robust fluorescence in situ hybridization. Proceedings of the National Academy of Sciences of the United States of America, 113, 11046–11051. doi: 10.1073/pnas.1612826113.
  Moffitt, J. R., Hao, J., Bambah‐Mukku, D., Lu, T., Dulac, C., & Zhuang, X. (2016b). High‐performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proceedings of the National Academy of Sciences of the United States of America, 113, 14456–14461. doi: 10.1073/pnas.1617699113.
  Nakahata, Y., Nabekur, A. J., & Murakoshi, H. (2016). Dual observation of the ATP‐evoked small GTPase activation and Ca2+ transient in astrocytes using a dark red fluorescent protein. Science Reports, 6, 39564. doi: 10.1038/srep39564.
  Nederlof, P. M., van der Flier, S., Vrolijk, J., Tanke, H. J., & Raap, A. K. (1992). Fluorescence ratio measurements of double‐labeled probes for multiple in situ hybridization by digital imaging microscopy. Cytometry, 13, 839–845. doi: 10.1002/cyto.990130806.
  Neil, M. A. A., Juskaitis, R., & Wilson, T. (1997). Method of obtaining optical sectioning by using structured light in a conventional microscope. Optics Letters, 15, 1905–1907. doi: 10.1364/OL.22.001905.
  Newman, R. H., Fosbrink, M. D., & Zhang, J. (2011). Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chemical Reviews, 111, 3614–3666. doi: 10.1021/cr100002u.
  Newton, I. (1672). A series of quere's propounded by Mr. Isaac Netwon, to be determin'd by experiments, positively and directly concluding his new theory of light and colours; and here recommended to the industry of the lovers of experimental philosophy, as they were generously imparted to the publisher in a letter of the said Mr. Newton of July 8, 1672. Philosophical Transactions, 7, 4004–5007.
  Newton, I. (1730). Optiks; or, a treatise of the reflections, refractions, inflections & colours of light (4th ed.). London: Dover Publications.
  Nguyen, A. W., & Daugherty, P. S. (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nature Biotechnology, 23, 355–360. doi: 10.1038/nbt1066.
  Niu, N., Zhang, J., Zhang, N., Mercado‐Uribe, I., Tao, F., Han, Z., … Liu, J. (2016). Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis, 5, e281. doi: 10.1038/oncsis.2016.75.
  Nobelprize.org. (Eds.) (2014). The Nobel Prize in Chemistry 2014. Nobel Media AB 2014. Retrieved from https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/.
  O'Brien, S., Cevario, S., Martenson, J., Thompson, M., Nash, W., Chang, E., … Lyons, L. (1997). Comparative gene mapping in the domestic cat (Felis catus). The Journal of Heredity, 88, 408–414. doi: 10.1093/oxfordjournals.jhered.a023127.
  O'Connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V. C., Strano, M. S., Haroz, E. H., … Smalley, R. E. (2002). Band gap fluorescence from individual single‐walled carbon nanotubes. Science, 297, 593–596. doi: 10.1126/science.1072631.
  Oheim, M. (2001). Imaging transmitter release. II. A practical guide to evanescent‐wave imaging. Lasers in Medical Science, 16, 159–170. doi: 10.1007/PL00011350.
  Okumoto, S., Jones, A., & Frommer, W. B. (2012). Quantitative imaging with fluorescent biosensors. Annual Review of Plant Biology, 63, 663–706. doi: 10.1146/annurev‐arplant‐042110‐103745.
  Ormö, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., & Remington, S. J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273, 1392–1395. doi: 10.1126/science.273.5280.1392.
  Ornberg, R. L., Woerner, B. M., & Edwards, D. A. (1999). Analysis of stained objects in histological sections by spectral imaging and differential absorption. The Journal of Histochemistry and Cytochemistry, 47, 1307–1314. doi: 10.1177/002215549904701010.
  Otsu, K., Fujii, J., Periasamy, M., Difilippantonio, M., Upender, M., Ward, D. C., & MacLennan, D. H. (1993). Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes. Genomics, 17, 507–509. doi: 10.1006/geno.1993.1357.
  Paddock, S. W. (Ed). (1999). Confocal microscopy methods and protocols. Totawa, NJ: Humana Press.
  Pan, C., Cai, R., Quacquarelli, F. P., Ghasemigharagoz, A., Lourbopoulos, A., Matryba, P., … Ertürk, A. (2016). Shrinkage‐mediated imaging of entire organs and organisms using uDISCO. Nature Methods, 13, 859–867. doi: 10.1038/nmeth.3964.
  Pansare, V., Hejazi, S., Faenza, W., & Prud'homme, R. K. (2012). Review of long‐wavelength optical and NIR imaging materials: Contrast agents, fluorophores and multifunctional nano carriers. Chemistry of Materials, 24, 812–827. doi: 10.1021/cm2028367.
  Pawley, J. B. (Ed.) (2005). Handbook of biological confocal microscopy (3rd ed.). New York: Plenum.
  Perkin, W. (1906). Address of William Henry Perkin. Science, 24, 488–493. doi: 10.1126/science.24.616.488.
  Phillips, K. G., Baker‐Groberg, S. M., & McCarty, O. J. (2014). Quantitative optical microscopy: Measurement of cellular biophysical features with a standard optical microscope. Journal of Visualized Experiments, 86, e50988. doi:10.3791/50988.
  Photometrics. (1995). SenSys user manual for windows. Tuscon, AZ: Photometrics.
  Piper, S. K., Habermehl, C., Schmitz, C. H., Kuebler, W. M., Obrig, H., Steinbrink, J., & Mehnert, J. (2013). Towards whole‐body fluorescence imaging in humans. PLoS One, 8, e83749. doi: 10.1371/journal.pone.0083749.
  Ploem, J. S. (1967). The use of a vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incidental light. Zeitschrift fur Wissenschaftliche Mikroskopie und Mikroskopische Technik, 68, 129–142.
  Price, J. H., Goodacre, A., Hahn, K., Hodgson, L., Hunter, E. A., Krajewski, S., … Heynen, S. (2002). Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools. Journal of Cellular Biochemistry, 87(Suppl 39), 194–210. doi: 10.1002/jcb.10448.
  Prost, S., Kishen, R. E., Kluth, D. C., & Bellamy, C. O. (2017). Working with commercially available quantum dots for immunofluorescence on tissue sections. PLoS One, 11, e0163856.5858. doi: 10.1371/journal.pone.0163856.
  Raman, R. N., Pivetti, C. D., Rubenchik, A. M., Matthews, D. L., Troppmann, C., & Demos, S. G. (2009). Evaluation of the contribution of the renal capsule and cortex to kidney autofluorescence intensity under ultraviolet excitation. Journal of Biomedical Optics, 14, 020505. doi: 10.1117/1.3094948.
  Raudsepp, T., Fronicke, L., Scherthan, H., Gustavsson, I., & Chowdhary, B. (1996). Zoo‐FISH delineates conserved chromosomal segments in horse and man. Chromosome Research, 4, 218–225. doi: 10.1007/BF02254963.
  Rawlins, D. (1992). Light microscopy. Oxford: BIOS Scientific Publishers.
  Ray, P., De, A., Min, J. J., Tsien, R. Y., & Gambhir, S. S. (2004). Imaging tri‐fusion multimodality reporter gene expression in living subjects. Cancer Research, 64, 1323–1330. doi: 10.1158/0008‐5472.CAN‐03‐1816.
  Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S., & Covert, M. W. (2014). High‐sensitivity measurements of multiple kinase activities in live single cells. Cell, 157, 1724‐1734. doi: 10.1016/j.cell.2014.04.039.
  Reitz, F. B., & Pagliaro, L. (1994). Fibre optic scrambling in light microscopy: A computer simulation and analysis. Journal of Microscopy, 176, 143–151. doi: 10.1111/j.1365‐2818.1994.tb03508.x.
  Rieckher. (2016). Light sheet microscopy to measure protein dynamics. Journal of Cellular Physiology, 232, 27–35. doi: 10.1002/jcp.25451.
  Ried, T., Baldini, A., Rand, T. C., & Ward, D. C. (1992). Simultaneous visualization of seven different DNA probes using combinatorial fluorescence and digital imaging microscopy. Proceedings of the National Academy of Sciences of the United States of America, 89, 1388–1392. doi: 10.1073/pnas.89.4.1388.
  Ried, T., Mahler, V., Vogt, P., Blonden, L., van Ommen, G. J. B., Cremer, T., & Cremer, M. (1990). Direct carrier detection by in situ suppression hybridization with cosmid clones for the Duchenne/Becker muscular dystrophy locus. Human Genetics, 85, 581–586. doi: 10.1007/BF00193578.
  Ried, T., Liyanage, M., du Manoir, S., Heselmeyer, K., Auer, G., Macville, M., & Schröck, E. (1997). Tumor cytogenetics revisited: Comparative genomic hybridization and spectral karyotyping. Journal of Molecular Medicine, 75, 801–814. doi: 10.1007/s001090050169.
  Rodenacker, K., & Bengtsson, E. (2003). A feature set for cytometry on digitized microscopic images. Analytical Cellular Pathology, 25, 1–36. doi: 10.1155/2003/548678.
  Rooney, D., & Czepulkowski, B. (1992). Human cytogenetics. A practical approach. New York: Oxford University Press.
  Rothmann, C., Barshack, I., Gil, A., Goldberg, I., Kopolovic, J., & Malik, Z. (2000). Potential use of spectral image analysis for the quantitative evaluation of estrogen receptors in breast cancer. Histology and Histopathology, 15, 1051–1057.
  Roxbury, D., Jena, P. V., Williams, R. M., Enyedi, B., Niethammer, P., Marcet, S., … Heller, D. A. (2015). Hyperspectral microscopy of near‐infrared fluorescence enables 17‐chirality carbon nanotube imaging. Scientific Reports, 5, 14167. doi: 10.1038/srep14167.
  Ruestow, E. G. (1996). The microscope in the Dutch Republic. New York: Cambridge University Press.
  Sachs, R. K., van den Engh, G., Trask, B., Yokota, H., & Hearst, J. E. (1995). A random‐walk/giant loop model for interphase chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 92, 2710–2714. doi: 10.1073/pnas.92.7.2710.
  Salmon, E. D., & Canman, J. C. (2003). Proper alignment and adjustment of the light microscope. Current Protocols in Human Genetics, 38, A.3N.1–A.3N.25. doi: 10.1002/0471142905.hga03ns38.
  Sawano, A., Hama, H., Saito, N., & Miyawaki, A. (2002). Multicolor imaging of Ca2+ and protein kinase C signals using novel epifluorescence microscopy. Biophysical Journal, 82, 1076–1085. doi: 10.1016/S0006‐3495(02)75467‐2.
  Schermelleh, L., Heintzmann, R., & Leonhardt, H. (2010). A guide to super‐resolution fluorescence microscopy. The Journal of Cell Biology, 190, 165–175. doi: 10.1083/jcb.201002018.
  Schröck, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson‐Smith, M. A., … Ried, T. (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273, 494–497. doi: 10.1126/science.273.5274.494.
  Schultz, R. A., Nielsen, T., Zavaleta, J. R., Ruch, R., Wyatt, R., & Garner, H. R. (2001). Hyperspectral imaging: A novel approach for microscopic analysis. Cytometry, 43, 239–247. doi: 10.1002/1097‐0320(20010401)43:4%3c239::AID‐CYTO1056%3e3.0.CO;2‐Z.
  Scott, B. L., & Hoppe, A. D. (2016). Three‐dimensional reconstruction of three‐way FRET microscopy improves imaging of multiple protein‐protein interactions. PLoS One, 11, e0152401. doi: 10.1371/journal.pone.0152401.
  Sednev, M. V., Belov, V. N., & Hell, S. W. (2015). Fluorescent dyes with large Stokes shifts for super‐resolution optical microscopy of biological objects: A review. Methods and Applications in Fluorescence, 3, 042004.
  Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22, 1567–1572. doi: 10.1038/nbt1037.
  Sharkey, J., Scarfe, L., Santeramo, I., Garcia‐Finana, M., Park, B. K., Poptani, H., … Murray, P. (2016). Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell‐based regenerative medicine therapies in models of kidney disease. European Journal of Pharmacology, 790, 74–82. doi: 10.1016/j.ejphar.2016.06.056.
  Shi, S.‐R., Gu, J., & Taylor, C. R. (2000). Antigen retrieval techniques: Immunohistochemistry and molecular morphology. Biotechniques Books. Natick, MA: Eaton Publishing Company.
  Shi, L., Sordillo, L. A., Rodríguez‐Contreras, A., & Alfano, R. (2016). Transmission in near‐infrared optical windows for deep brain imaging. Journal of Biophotonics, 9, 38–43. doi: 10.1002/jbio.201500192.
  Shotton, D. (1993). Electronic light microscopy: The principles and practice of video‐enhanced contrast, digital intensified fluorescence, and confocal scanning light microscopy. New York: John Wiley & Sons.
  Siedentopf, H., & Zsigmondy, R. (1902). Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser. [About visualization and sizing ultramicroscopic particles, with particular application to gold ruby glasses]. Annalen der Physik, 315, 1–39. doi: 10.1002/andp.19023150102.
  Singer, E. (1932). A microscope for observation of fluorescence in living tissue. Science, 75, 289–291. doi: 10.1126/science.75.1941.289‐a.
  Spector, D., Goldman, R., & Leinwand, L. (Eds.). (1998). Light microscopy and cell structure. In Cells: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  Speicher, M., Ballard, S., & Ward, D. (1996). Karyotyping human chromosomes by combinatorial multi‐fluor FISH. Nature Genetics, 12, 1–11. doi: 10.1038/ng0496‐368.
  Stockholm, D., Bartoli, M., Sillon, G., Bourg, N., Davoust, J., & Richard, I. (2005). Imaging calpain protease activity by multiphoton FRET in living mice. Journal of Molecular Biology, 346, 215–222. doi: 10.1016/j.jmb.2004.11.039.
  Stryer, L., & Haugland, R. P. (1967). Energy transfer: A spectroscopic ruler. Proceedings of the National Academy of Sciences of the United States of America, 58, 719–726. doi: 10.1073/pnas.58.2.719.
  Sullivan, K. F., & Shelby, R. D. (1999). Using timelapse confocal microscopy for analysis of centromere dynamics in human cells. Methods in Cell Biology, 58, 183–202. doi: 10.1016/S0091‐679X(08)61956‐1.
  Swift, J., (1726). Gulliver's travels into several remote nations of the world. London: Benjamin Motte.
  Szuhai, K., Bezrookove, V., Wiegant, J., Vrolijk, J., Dirks, R. W., Rosenberg, C., … Tanke, H. J. (2000). Simultaneous molecular karyotyping and mapping of viral DNA integration sites by 25‐color COBRA‐FISH. Genes Chromosomes Cancer, 28, 92–97. doi: 10.1002/(SICI)1098‐2264(200005)28:1%3c92::AID‐GCC11%3e3.0.CO;2‐2.
  Takai, A., Nakano, M., Saito, K., Haruno, R., Watanabe, T. M., Ohyanagi, T., … Nagai, T. (2015). Expanded palette of Nano‐lanterns for real‐time multicolor luminescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 112, 4352–4356. doi: 10.1073/pnas.1418468112.
  Taniguchi, M., & Lindsey, J. S. (2017). Synthetic chlorins, possible surrogates for chlorophylls, prepared by derivatization of porphyrins. Chemical Reviews, 117, 344–535. doi: 10.1021/acs.chemrev.5b00696
  Taniguchi, M., Cramer, D. L., Bhise, A. D., Kee, H. L., Bocian, D. F., Holten, D., & Lindsey, J. S. (2008). Accessing the near‐infrared spectral region with stable, synthetic, wavelength‐tunable bacteriochlorins. New Journal of Chemistry, 32, 947–958. doi: 10.1039/b717803d.
  Taniwaki, M., Speicher, M. R., Lengauer, C., Jauch, A., Popp, S., & Cremer, T. (1993). Characterization of two marker chromosomes in a patient with acute nonlymphocytic leukemia by two color fluorescence in situ hybridization. Cancer Genetics and Cytogenetics, 70, 99–102. doi: 10.1016/0165‐4608(93)90175‐L.
  Tanke, H. J., Wiegant, J., Van Gijlswijk, R. P. M., Bezrookove, V., Pattenier, H., Heetebrij, R. J., … Vrolijk, J. (1999). New strategy for multi‐colour fluorescence in situ hybridisation. COBRA: Combined binary ratio labelling. European Journal of Human Genetics, 7, 2–11. doi: 10.1038/sj.ejhg.5200265.
  Tao, Z., Hong, G., Shinji, C., Chen, C., Diao, S., Antaris, A. L., … Dai, H. (2013). Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angewandte Chemie (International ed. in English), 52, 13002–13006. doi: 10.1002/anie.201307346.
  Terskikh, A., Fradkov, A., Ermakova, G., Zaraisky, A., Tan, P., Kajava, A. V., … Siebert, P. (2000). “Fluorescent timer”: Protein that changes color with time. Science, 290, 1585–1588. doi: 10.1126/science.290.5496.1585.
  Tewson, P. H., Martinka, S., Shaner, N. C., Hughes, T. E., & Quinn, A. M. (2016). New DAG and cAMP sensors optimized for live‐cell assays in automated laboratories. Journal of Biomolecular Screening, 21, 298–305. doi: 10.1177/1087057115618608.
  Thangavelu, M., Pergament, E., Espinosa, R. I., & Bohlander, S. K. (1994). Characterization of marker chromosomes by microdissection and fluorescence in situ hybridization. Prenatal Diagnosis, 14, 583–588. doi: 10.1002/pd.1970140712.
  Tillberg, P. W., Chen, F., Piatkevich, K. D., Zhao, Y., Yu, C. C., English, B. P., … Boyden, E. S. (2016). Protein‐retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nature Biotechnology, 34, 987–992. doi: 10.1038/nbt.3625.
  Tjio, J. H., & Levan, A. (1956). The chromosome number of man. Hereditas, 42, 1–6. doi: 10.1111/j.1601‐5223.1956.tb03010.x.
  Tran, P. T., & Chang, F. (2001). Transmitted light fluorescence microscopy revisited. The Biological Bulletin, 201, 235–236. doi: 10.2307/1543340.
  Trask, B., Fertitta, A., Christensen, M., Youngblom, J., Bergmann, A., Copeland, A., … Tynan, K. (1993). Fluorescence in situ hybridization mapping of human chromosome, 19, Cytogenetic band location of 540 cosmids and 70 genes or DNA markers. Genomics, 15, 133–145. doi: 10.1006/geno.1993.1021.
  Tsanov, N., Samacoits, A., Chouaib, R., Traboulsi, A. M., Gostan, T., Weber, C., … Mueller, F. (2016). smiFISH and FISH‐quant ‐ a flexible single RNA detection approach with super‐resolution capability. Nucleic Acids Research, 44, e165. doi: https://doi.org/10.1093/nar/gkw784.
  Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544. doi: 10.1146/annurev.biochem.67.1.509.
  Tsien, R. Y. (2005). Building and breeding molecules to spy on cells and tumors. FEBS Letters, 579, 927–932. doi: 10.1016/j.febslet.2004.11.025.
  Tsurui, H., Nishimura, H., Hattori, S., Hirose, S., Okumura, K., & Shirai, T. (2000). Seven‐color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition. The Journal of Histochemistry and Cytochemistry, 48, 653–662. doi: 10.1177/002215540004800509.
  Turkowyd, B., Virant, D., & Endesfelder, U. (2016). From single molecules to life: Microscopy at the nanoscale. Analytical and Bioanalytical Chemistry, 408, 6885–6911. doi: 10.1007/s00216‐016‐9781‐8.
  Urquidi, V., Sloan, D., Kawai, K., Agarwal, D., Woodman, A. C., Tarin, D., & Goodison, S. (2002). Contrasting expression of thrombospondin‐1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clinical Cancer Research, 8, 61–74.
  Valm, A. M., Oldenbourg, R., & Borisy, G. G. (2016). Multiplexed spectral imaging of 120 different fluorescent labels. PLoS One, 11, e0158495. doi: 10.1371/journal.pone.0158495.
  van der Voort, H., Valkenburg, J., van Spronsen, E., Woldringh, C., & Brakenhoff, G. (1987). Confocal microscopy in comparison with electron and conventional light microscopy. In M. Hayat (Ed.), Correlative microscopy in biology: Instrumentation and methods (pp. 23‐37). San Diego: Academic Press.
  Veldman, T., Vignon, C., Schröck, E., Rowley, J. D., & Ried, T. (1997). Hidden chromosomes: Abnormalities in hematological malignancies detected by multicolour spectral karyotyping. Nature Genetics, 15, 406–410. doi: 10.1038/ng0497‐406.
  Voie, A. H., Burns, D. H., & Spelman, F. A. (1993). Orthogonal‐plane fluorescence optical sectioning: Three‐dimensional imaging of macroscopic biological specimens. Journal of Microscopy, 170, 229–236. doi: 10.1111/j.1365‐2818.1993.tb03346.x.
  Vollert, C. T., Moree, W. J., Gregory, S., Bark, S. J., & Eriksen, J. L. (2015). Formaldehyde scavengers function as novel antigen retrieval agents. Scientific Reports, 5, 17322. doi: 10.1038/srep17322.
  von Waldeyer, W. (1888). Über karyokinese und ihre beziehungen zu den befruchtungsvorgängen. [About mitosis and its relationship with the processes of fertilization]. Archiv Für Mikroskopische Anatomie und Entwicklungsmechanik, 32, 1–122. doi: 10.1007/BF02956988.
  Wang, L., Jackson, W. C., Steinbach, P. A., & Tsien, R. Y. (2004). Evolution of new nonantibody proteins via iterative somatic hypermutation. Proceedings of the National Academy of Sciences of the United States of America, 101, 16745–16749. doi: 10.1073/pnas.0407752101.
  Wang, X., Rosol, M., Ge, S., Peterson, D., McNamara, G., Pollack, H., … Crooks, G. M. (2003). Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood, 102, 3478–3482. doi: 10.1182/blood‐2003‐05‐1432.
  Ward, D. (2010). Faster, better, cheaper revisited ‐ program management lessons from NASA. Defense AT&L, 48‐52. Retrieved from http://www.thedanward.com/resources/Faster$2C+Better$2C+Cheaper+Revisited.pdf.
  Ward, D. C., Lichter, P., Boyle, A., Baldini, A., Menninger, J., & Ballard, S. G. (1991). Gene mapping by fluorescent in situ hybridization and digital imaging microscopy. In J. Lindsten & U. Petterson (Eds.), Etiology of human diseases at the DNA level. New York: Raven Press.
  Waud, J. P., Bermudez Fajardo, A., Sudhaharan, T., Trimby, A. R., Jeffery, J., Jones, A., & Campbell, A. K. (2001). Measurement of proteases using chemiluminescence‐resonance‐energy‐transfer chimaeras between green fluorescent protein and aequorin. The Biochemical Journal, 357, 687–697. doi: 10.1042/bj3570687.
  White, J. G., Amos, W. B., & Fordham, M. (1987). An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. The Journal of Cell Biology, 105, 41–48. doi: 10.1083/jcb.105.1.41.
  Wiegant, J., Bezrookove, V., Rosenberg, C., Tanke, H. J., Raap, A. K., Zhang, H., … Meltzer, P. (2000). Differentially painting human chromosome arms with combined binary ratio‐labeling fluorescence in situ hybridization. Genome Research, 10, 861–865. doi: 10.1101/gr.10.6.861.
  Wienberg, J., Jauch, A., Stanyon, R., & Cremer, T. (1990). Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics, 8, 347–370. doi: 10.1016/0888‐7543(90)90292‐3.
  Wikipedia. (2016). Torbjorn Caspersson Retrieved from https://en.wikipedia.org/wiki/Torbj%C3%B6rn_Caspersson.
  Xing, Y., Johnson, C. V., Dobner, P. R., & Lawrence, J. B. (1993). Higher level organization of individual gene transcription and RNA splicing. Science, 259, 1326–1330. doi: 10.1126/science.8446901.
  Xu, Y., Piston, D. W., & Johnson, C. H. (1999). A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 151–156. doi: 10.1073/pnas.96.1.151.
  Xu, T., Close, D., Handagama, W., Marr, E., Sayler, G., & Ripp, S. (2016). The expanding toolbox of in vivo bioluminescent imaging. Frontiers in Oncology, 6, 150. doi: 10.3389/fonc.2016.00150.
  Yokota, H., Singer, M. J., van den Engh, G. J., & Trask, B. J. (1997). Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei. Chromosome Research, 5, 157–166. doi: 10.1023/A:1018438729203.
  Yokota, H., van den Engh, G., Hearst, J. E., Sachs, R. K., & Trask, B. J. (1995). Evidence for the organization of chromatin in megabase pairsized loops arranged along a random walk path in the human G0/G1 interphase nucleus. The Journal of Cell Biology, 130, 1239–1249. doi: 10.1083/jcb.130.6.1239.
  Yuste, R., & Konnerth, A. (2005). Imaging in neuroscience and development. A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Press
  Zernike, F. (1955). How I discovered phase contrast. Science, 121, 345–349. doi: 10.1126/science.121.3141.345.
  Zhang, W., Purchio, A., Chen, K., Burns, S. M., Contag, C. H., & Contag, P. R. (2003). In vivo activation of the human CYP3A4 promoter in mouse liver and regulation by pregnane X receptors. Biochemical Pharmacology, 65, 1889–1896. doi: 10.1016/S0006‐2952(03)00188‐6.
  Zhang, Y. S., Chang, J. B., Alvarez, M. M., Trujillo‐de Santiago, G., Aleman, J., Batzaya, B., … Khademhosseini, A. (2016). Hybrid microscopy: Enabling inexpensive high‐performance imaging through combined physical and optical magnifications. Scientific Reports, 6, 22691. doi: 10.1038/srep22691.
  Zhao, Y., Araki, S., Wu, J., Teramoto, T., Chang, Y. F., Nakano, M., … Campbell, R. E. (2011). An expanded palette of genetically encoded Ca2+ indicators. Science, 333, 1888–1891. doi: 10.1126/science.1208592.
  Zucker, R. M. (2006). Whole insect and mammalian embryo imaging with confocal microscopy: Morphology and apoptosis. Cytometry. Part A, 69, 1143–1152. doi: 10.1002/cyto.a.20343.
  Zucker, R. M., & Jeffay, S. C. (2006). Confocal laser scanning microscopy of whole mouse ovaries: Excellent morphology, apoptosis detection, and spectroscopy. Cytometry Part A, 69, 930–939. doi: 10.1002/cyto.a.20315.
Key References
  Newman, R. H., Fosbrink, M. D., Zhang, J., (2011). Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chemical Reviews, 111, 3614‐3666. doi: 10.1021/cr100002u.
  See supplemental file. An extensive review related to the construction and use of fluorescently tagged proteins for monitoring and measuring proteins and protein‐protein interactions in living cells.
  Zhang, J., Ni, Q., Newman, R. H. (Eds.) (2014). Fluorescent protein‐based biosensors: methods and protocols, Methods in Molecular Biology 1071. Totowa, NJ: Humana Press.
  Fluorescent biosensor applications for live cell imaging of many biological processes.
Internet Resources
  http://biosensor.dpb.carnegiescience.edu/biosensors
  Contributed by DPB/DGE Codex; see W. B. Frommer entry for molecular sensors.
  https://www.addgene.org/fluorescent‐proteins/biosensors
  Contributed by Addgene; fluorescent protein guide: Biosensors.
  http://www.GeoMcNamara.com
  Contributed by George McNamara.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library