Diagnosis of Fanconi Anemia by Diepoxybutane Analysis

Arleen D. Auerbach1

1 Program in Human Genetics and Hematology, The Rockefeller University, New York
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 8.7
DOI:  10.1002/0471142905.hg0807s85
Online Posting Date:  April, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Fanconi anemia (FA) is a genetically and phenotypically heterogeneous disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer, particularly hematological malignancies and solid tumors of the head and neck. The main role of FA proteins is in the repair of DNA interstrand crosslinks (ICLs). FA results from pathogenic variants in at least sixteen distinct genes, causing genomic instability. Although the highly variable phenotype makes accurate diagnosis on the basis of clinical manifestations difficult in some patients, diagnosis based on a profound sensitivity to DNA‐crosslinking agents can be used to identify the pre‐anemia patient as well as patients with aplastic anemia or leukemia who may or may not have the physical stigmata associated with the syndrome. Diepoxybutane (DEB) analysis is the preferred test for FA because other agents have higher rates of false‐positive and false‐negative results. © 2015 by John Wiley & Sons, Inc.

Keywords: Fanconi anemia; DEB test; DNA interstrand crosslink repair; genomic instability

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Diepoxybutane Test for Postnatal Diagnosis of Fanconi Anemia
  • Support Protocol 1: Working with and Disposing of Diepoxybutane
  • Support Protocol 2: Giemsa Staining for Chromosome‐Breakage Analysis
  • Alternate Protocol 1: Diepoxybutane Test Using Fibroblast Cultures
  • Alternate Protocol 2: Diepoxybutane Test for Prenatal Diagnosis of Fanconi Anemia
  • Commentary
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Diepoxybutane Test for Postnatal Diagnosis of Fanconi Anemia

  Materials
  • Peripheral blood: collect in a preservative‐free sodium heparin Vacutainer tube (e.g., Fisher Scientific)
  • Complete RPMI/15% FBS (see appendix 3G)/1% (w/v) phytohemagglutinin (PHA; Sigma‐Aldrich or Thermo Scientific)
  • PBS ( appendix 2D)
  • Diepoxybutane (1,3‐butadiene diepoxide, DEB; store at 4°C; Sigma‐Aldrich)
  • 1 μg/ml colcemid solution in PBS (store at 4°C; e.g., Life Technologies)
  • 0.075 M potassium chloride (KCl), 37°C
  • Fixative: 3:1 (v/v) methanol/glacial acetic acid (prepare fresh)
  • 10‐ml syringe equipped with 18.5‐G needle
  • 25‐cm2 tissue culture flasks
  • 15‐ml sterile conical‐bottom centrifuge tubes with caps
  • IEC clinical centrifuge or equivalent
  • Microscope slides (store in 70% ethanol)
  • Inverted microscope
  • Additional reagents and equipment for collection of peripheral blood lymphocytes (unit 4.1, Bangs and Donlon, ), tissue culture ( appendix 3G), preparing metaphase chromosome slides (unit 4.1, Bangs and Donlon, ), and karyotyping ( appendix 4A)
NOTE: All incubations are performed in a humidified 37°C, 5% CO 2 incubator unless otherwise specified.

Support Protocol 1: Working with and Disposing of Diepoxybutane

  Materials
  • Gurrs buffer tablets, pH 6.8 (Bio/medical Specialties)
  • Giemsa stain (e.g., Life Technologies)
  • Metaphase chromosome slide (see protocol 1Basic Protocol)
  • Permount histological mounting medium
  • Coplin jars

Support Protocol 2: Giemsa Staining for Chromosome‐Breakage Analysis

  Additional Materials (also see protocol 1Basic Protocol)
  • Tissue biopsies (e.g., full‐thickness skin sample taken using a 3‐mm punch)
  • Complete DMEM/20% (v/v) FBS ( appendix 3G)
  • 0.051 M (0.38% w/v) potassium chloride (KCl)
  • 1× trypsin/EDTA solution ( appendix 3G)
  • 60‐mm tissue culture plates
  • Disposable scalpels
  • Additional reagents and equipment for passaging cells by trypsinization and counting cells ( appendix 3G)
NOTE: All incubations are performed in a humidified 37°C, 5% CO 2 incubator unless otherwise specified.

Alternate Protocol 1: Diepoxybutane Test Using Fibroblast Cultures

  Additional Materials (also see protocol 1Basic Protocol)
  • Fetal cells, enough to establish cultures in two 25‐cm2 flasks
  • Growth medium: 1:1 mixture of Chang medium (unit 8.4, Minehart Miron, ) and complete RPMI/15% FBS ( appendix 3G)
  • Additional materials and equipment for culture of chorionic villi (unit 8.3, Breman and Patel, ) and amniotic fluid (unit 8.4, Minehart Miron, )
NOTE: All incubations are performed in a humidified 37°C, 5% CO 2 incubator unless otherwise specified.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Albers, C.A., Paul, D.S., Schulze, H., Freson, K., Stephens, J.C., Smethurst, P.A., Jolley, J.D., Cvejic, A., Kostadima, M., Bertone, P., Breuning, M.H., Debili, N., Deloukas, P., Favier, R., Fiedler, J., Hobbs, C.M., Huang, N., Hurles, M.E., Kiddle, G., Krapels, I., Nurden, P., Ruivenkamp, C.A.L., Sambrook, J.G., Smith, K., Stemple, D.L., Strauss, G., Thys, C., Van Geet, C., Newbury‐Ecob, R., Ouwehand, W.H., and Ghevaert C. 2012. Compound inheritance of a low‐frequency regulatory SNP and a rare null mutation in exon‐junction complex subunit RBM8A causes TAR syndrome. Nat. Genet. 44:435‐439.
  Alder, J.K., Parry, E.M., Yegnasubramanian, S., Wagner, C.L., Lieblich, L.M., Auerbach, R., Auerbach, A.D., Wheelan, S.J., and Armanios, M. 2013. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene. Hum. Mutat. 34:1481‐1485.
  Armanios, M., Chen, J.‐L., Chang, Y.‐P.C., Brodsky, R.A., Hawkins, A., Griffin, C.A., Eshleman, J.R., Cohen, A.R., Chakravarti, A., Hamosh, A., and Greider, C.W. 2005. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc. Nat. Acad. Sci. U.S.A. 102:15960‐15964.
  Auerbach, A.D. 1993. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp. Hematol. 21:731‐733.
  Auerbach, A.D. 2009. Fanconi anemia and its diagnosis. Mutat. Res. 668:4‐10.
  Auerbach, A.D. and Wolman, S.R. 1976. Susceptibility of Fanconi's anaemia fibroblasts to chromosome damage by carcinogens. Nature 261:494‐496.
  Auerbach, A.D., Sagi, M., and Adler, B. 1985. Fanconi anemia: Prenatal diagnosis in 30 fetuses at risk. Pediatrics 76:794‐800.
  Auerbach, A.D., Rogatko, A., and Schroeder‐Kurth, T.M. 1989. International Fanconi Anemia Registry: Relation of clinical symptoms to diepoxybutane sensitivity. Blood 73:391‐396.
  Auerbach, A.D., Liu, Q., Ghosh, R., Pollack, M.S., Douglas, G.W., and Broxmeyer, H.E. 1990. Prenatal identification of potential donors for umbilical cord blood transplantation for Fanconi anemia. Transfusion 30:682‐687.
  Auerbach, A.D., Greenbaum, J., Pujara, K., Batish, S.D., Bitencourt, M.A., Kokemohr, I., Schneider, H., Lobitz, S., Pasquini, R., Giampietro, P.F., Hanenberg, H., and Levran, O. 2003. Spectrum of sequence variation in the FANCG gene: An International Fanconi Anemia Registry (IFAR) study. Hum. Mutat. 21:158‐168.
  Auerbach, A.D., Zhang, M., Ghosh, R., Pergament, E., Verlinsky, Y., Nicholas, H., and Boué, J. 1986. Clastogen‐induced chromosomal breakage as a marker for first trimester prenatal diagnosis of Fanconi anemia. Hum. Genet. 73:86‐88.
  Bangs, C.D. and Donlon, T.A. 2005. Metaphase chromosome preparation from cultured peripheral blood cells. Curr. Protoc. Hum. Genet. 45:4.1.1‐4.1.19.
  Basson, C.T., Huang, T., Lin, R.C., Bachinsky, D.R., Weremowicz, S., Vaglio, A., Bruzzone, R., Quadrelli, R., Lerone, M., Romeo, G., Silengo, M., Pereira, A., Krieger, J., Mesquita, S.F., Kamisago, M., Morton, C.C., Piermont, M.E.M., Muller, C.W., Seidman, J.G., and Seidman, C.E. 1999. Different TBX5 interaction in heart and limb defined by Holt‐Oram syndrome mutations. Proc. Natl. Acad. Sci. U.S.A. 96:2919‐2924.
  Bogliolo, M., Schuster, B., Stoepker, C., Derkunt, B., Su, Y., Raams, A., Trujillo, J.P., Minguillon, J., Ramirez, M.J., Pujol, R., Casado, J.A., Banos, R., Rio, P., Knies, K., Zúñiga, S., Benítez, J., Bueren J.A., Jaspers, N.G., Schärer, O.D., de Winter, J.P., Schindler, D., and Surrallé, J. 2013. Mutations in ERCC4, encoding the DNA‐repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet. 92:800‐806.
  Boocock, G.R. B., Morrison, J.A., Popovic, M., Richards, N., Ellis, L., Durie, P.R., and Rommens, J.M. 2003. Mutations in SBDS are associated with Shwachman‐Diamond syndrome. Nat. Genet. 33:97‐101.
  Breman, A. and Patel, A. 2012. Preparation of chorionic villus samples for metaphase chromosome analysis and chromosomal microarray analysis. Curr. Protoc. Hum. Genet. 75:8.3.1‐8.3.9.
  Chandrasekharappa, S.C., Lach, F.P., Kimble, D.C., Kamat, A., Teer, J.K., Donovan, F.X., Flynn, E., Sen, S.K., Thongthip, S., Sanborn, E., Smogorzewska, A., Auerbach, A.D., Ostrander, E.A., and NISC Comparative Sequencing Program. 2013. Massively parallel sequencing, aCGH, and RNA‐Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood 121:e138‐e148.
  Draptchinskaia, N., Gustavsson, P., Anderssson, B., Pettersson, M., Willig, T.‐N., Diazani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., Tentler, D., Mohandas, N., Carlsson, B., and Dahl, N. 1999. The gene encoding ribosomal protein S19 is mutated in Diamond‐Blackfan anaemia. Nat. Genet. 21:169‐175.
  El Ghouzzi, V., Le Merrer, M., Perrin‐Schmitt, F., Lajeunie, E., Benit, P., Renier, D., Bourgeois, P., Bolcato‐Bellemin, A.‐L., Munnich, A., and Bonaventure, J. 1997. Mutations of the TWIST gene in Saethre‐Chotzedn syndrome. Nat. Genet. 15:42‐46.
  Flynn, E.K., Kamat, A., Lach, F.P., Donovan, F.X., Kimble, D.C., Narisu, N., Sanborn, E., Boulad, F., Davies, S.M., Gillio, A.P. III, Harris, R.E., MacMillan, M.L., Wagner, J.E. Jr., Smogorzewska, A., Auerbach, A.D., Ostrander, E.A., and Chandrasekharappa, S.C. 2014. Comprehensive analysis of pathogenic deletion variants in Fanconi anemia genes. Hum. Mutat. 35:1342‐1353.
  Garner, E. and Smogorzewska, A. 2011. Ubiquitylation and the Fanconi anemia pathway. FEBS Letters. 585:2853‐2860.
  Gerrard, G., Valganon, M., Foong, H.E., Kasperaviciute, D., Iskander, D., Game, L., Muller, M., Aitman, T.J., Roberts, I., de la Fuente, J., Foroni, L., and Karadimitris, A. 2013. Target enrichment and high‐throughput sequencing of 80 ribosomal protein genes to identify mutations associated with Diamond‐Blackfan anaemia. Br. J. Haematol. 162:530‐536.
  Giampietro, P.F., Verlander, P.C., Davis, J.G., and Auerbach, A.D. 1997. Diagnosis of Fanconi anemia in patients without congenital malformations: An International Fanconi Anemia Registry study. Am. J. Med. Genet. 68:58‐61.
  Giampietro, P.F., Adler‐Brecher, B., Verlander, P.C., Pavlakis, S.G., Davis, J.G., and Auerbach, A.D. 1993. The need for more accurate and timely diagnosis in Fanconi anemia: A report from the International Fanconi Anemia Registry. Pediatrics 91:1116‐1120.
  Gregory, J.J., Wagner, J.E., Verlander, P.C., Levran, O., Batish, S.D., Eide, C., Steffenhagen, A., Hirsch, B., and Auerbach, A.D. 2001. Somatic mosaicism in Fanconi anemia: Evidence of genotypic reversion in lympho‐hematopoietic stem cells. Proc. Natl. Acad. Sci. U.S.A. 98:2532‐2537.
  Grewal, S.S., Jeffrey P. Kahn, J.P., MacMillan, M.L., Ramsay, N.K.C., and Wagner J.E. 2004. Successful hematopoietic stem cell transplantation for Fanconi anemia from an unaffected HLA‐genotype—identical sibling selected using preimplantation genetic diagnosis. Blood 103:1147‐1151.
  Heiss, N.S., Knight, S.W., Vulliamy, T.J., Klauck, S.M., Wiemann, S., Mason, P.J., Poustka, A., and Dokal, I. 1998. X‐linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19:32‐38.
  Howlett, N.G., Taniguchi, T., Olson, S., Cox, B., Waisfisz, Q., De Die‐Smulders, C., Persky, N., Grompe, M., Joenje, H., Pals, G., Ikeda, H., Fox, E.A., and D'Andrea, A.D. 2002. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606‐609.
  Jongmans, M.C.J., Verwiel, E.T.P., Heijdra, Y., Vulliamy, T., Kamping, E.J., Hehir‐Kwa, J.Y., Bongers, E.M.H.F., Pfundt, R., van Emst, L., van Leeuwen, F.N., van Gassen, K.L.I., Geurts van Kessel, A., Dokal, I., Hoogerbrugge, N., Ligtenberg, M.J.L., and Kuiper, R.P. 2012. Revertant somatic mosaicism by mitotic recombination in dyskeratosis congenita. Am. J. Hum. Genet. 90:426‐433.
  Kim, Y., Lach, F.P., Desetty, R., Hanenberg, H., Auerbach, A.D., and Smogorzewska, A. 2011. Mutations of the SLX4 gene in Fanconi anemia. Nat. Genetics. 43:142‐146.
  Kottemann, M.C. and Smogorzewska, A. 2013. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493:356‐363.
  Kutler, D.I., Singh, B., Satagopan, J., Batish, S.D., Berwick, M., Giampietro, P.F., and Auerbach, A.D. 2003. A 20‐year perspective of the International Fanconi Anemia Registry (IFAR). Blood 101:1249‐1256.
  Levran, O., Erlich, T., Magdalena, N., Gregory, J.J., Batish, S.D., Verlander, P.C., and Auerbach, A.D. 1997. Sequence variation in the Fanconi anemia gene, FAA. Proc. Natl. Acad. Sci. U.S.A. 94:13051‐13056.
  Levran, O., Attwooll, C., Henry, R.T., Milton, K.L., Neveling, K., Rio, P., Batish, S.D., Kalb, R., Velleur, E., Barral, S., Ott, J., Petrini, J., Schindler, D., Hanenberg, H., and Auerbach, A.D. 2005. The BRCA1‐interacting helicase BRIP1 is deficient in Fanconi anemia. Nat. Genet. 37:931‐933.
  Lo Ten Foe, J.R., Kwee, M.L., Rooimans, M.A., Oostra, A.B., Veerman, A.J., van Weel, M., Pauli, R.M., Shahidi, N.T., Dokal, I., Roberts, I., Altay, C., Gluckman, E., Gibson, R.A., Mathew, C.G., Arwert, F., and Joenje, H. 1997. Somatic mosaicism in Fanconi anaemia: Molecular basis and clinical significance. Eur. J. Hum. Genet. 5:137‐148.
  Meetei, A.R., Levitus, M., Xue, Y., Medhurst, A.L., Zwaan, M., Ling, C., Rooimans, M.A., Bier, P., Hoatlin, M., Pals, G., de Winter, J.P., Wang, W., and Joenje, H. 2004. X‐linked inheritance of Fanconi anemia complementation group B. Nat. Genet. 36:1219‐1224.
  Minehart Miron, P. 2012. Preparation, culture, and analysis of amniotic fluid samples. Curr. Protoc. Hum. Genet. 74:8.4.1‐8.4.14.
  Nakanishi, K., Taniguchi, T., Ranganathan, V., New, H.V., Moreau, L.A., Stotsky, M., Mathew, C.G., Kastan, M.B., Weaver, D.T., and D'Andrea, A.D. 2002. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat. Cell Biol. 4:913‐920.
  O'Driscoll, M., Ruiz‐Perez, V.L., Woods, C.G., Jeggo, P.A., and Goodship, J.A. 2003. A splicing mutation affecting expression of ataxia‐telangiectasia and Rad3‐related protein (ATR) results in Seckel syndrome. Nat. Genet. 33:497‐501.
  Porteous, M.E.M., Cross, I., and Burn, J. 1992. VACTERL with hydrocephalus: One end of the Fanconi anemia spectrum of anomalies. Am. J. Med. Genet. 43:1032‐1034.
  Reid, S., Schindler, D., Hanenberg, H., Barker, K., Hanks, S., Kalb, R., Neveling, K., Kelly, P., Seal, S., Freund, M., Wurm, M., Batish, S.D., Lach, F.P., Yetgin, S., Neitzel, H., Ariffin, H., Tischkowitz, M., Mathew, C.G., Auerbach, A.D., and Rahman, N. 2007. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA‐N and predispose to childhood cancer. Nat. Genet. 39:162‐164.
  Savage, S.A., Giri, N., Baerlocher, G.M., Orr, N., Lansdorp, P.M., and Alter, B.P. 2008. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am. J. Hum. Genet. 82:501‐509.
  Shaffer, L.G., McGowan‐Jordan, J., and Schmid, M. (eds.) 2013. ISCN 2013: An International System for Human Cytogenetic Nomenclature 2013. Karger Medical and Scientific Publishers (in collaboration with Cytogenetic and Genome Research), Basel.
  Shimamura, A., Montes de Oca, R., Svenson, J.L., Haining, N., Moreau, L.A., Nathan, D.G., and D'Andrea, A.D. 2002. A novel diagnostic screen for defects in the Fanconi anemia pathway. Blood 100:4649‐4654.
  Taddei, I., Morishima, M., Huynh, T., and Lindasy, E.A. 2001. Genetic factors are major determinants of phenotypic variability in a mouse model of the DiGeorge/del22q11 syndromes. Proc. Natl. Acad. Sci. U.S.A. 98:11428‐11431.
  Talbot, C. and Cuticchia, A.J. 2001. Human mapping databases. Curr. Protoc. Hum. Genet. 25:1.13.1‐1.13.21.
  Tsukahara, M. and Opitz, J.M. 1996. Dubowitz syndrome: Review of 141 cases including 36 previously unreported patients. Am. J. Med. Genet. 63:277‐289.
  Van Maldergem, L., Siitonen, H.A., Jalkh, N., Chouery, E., De Roy, M., Delague, V., Muenke, M., Jabs, E.W., Cai, J., Wang, L.L., Plon, S.E., Fourneau, C., Kestila, M., Gillerot, Y., Megarbane, A., and Verloes, A. 2006. Revisiting the craniosynostosis‐radial ray hypoplasia association: Baller‐Gerold syndrome caused by mutations in the RECQL4 gene. J. Med. Genet. 43:148‐152.
  Varon, R., Vissinga, C., Platzer, M., Cerosaletti, K.M., Chrzanowska, K.H., Saar, K., Beckmann, G., Seemanova, E., Cooper, P.R., Nowak, N.J., Stumm, M., Weemaes, C.M.R., Gatti, R.A., Wilson, R.K., Digweed, M., Rosenthal, A., Sperling, K., Concannon, P., and Reis, A. 1998. Nibrin, a novel DNA double‐strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93:467‐476.
  Vaz, F., Hanenberg, H., Schuster, B., Barker, K., Wiek, C., Erven, V., Neveling, K., Endt, D., Kesterton, I., Autore, F., Fraternali, F., Freund, M., Hartmann, L., Grimwade, D., Roberts, R.G., Schaal, H., Mohammed, S., Rahman, N., Schindler, D., and Mathew, C.G. 2010. Mutation of the RAD51C gene in a Fanconi anemia‐like disorder. Nat. Genet. 42:406‐409.
  Verlander, P.C., Kaporis, A.G., Liu, Q., Zhang, Q., Seligsohn, U., and Auerbach, A.D. 1995. Carrier frequency of the IVS4 + 4 A → T mutation of the Fanconi anemia gene FAC in the Ashkenazi Jewish population. Blood 86:4034‐4038.
  Verlinsky, Y., Rechitsky, S., Schoolcraft, W., Strom, C., and Kuliev, A. 2001. Preimplantation diagnosis for Fanconi anemia combined with HLA matching. J. Am. Med. Assoc. 285:3130‐3133.
  Vulliamy, T., Marrone, A., Szydlo, R., Walne, A., Mason, P.J., and Dokal, I. 2004. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat. Genet. 36:447‐449.
  Wagner, J.E., MacMillan, M.L., and Auerbach, A.D. 2003. Hematopoietic cell transplantation for Fanconi anemia. In Thomas’ Hematopoietic Cell Transplantation, 3rd Edition. (K.G. Blume, S.J. Forman, and F.R. Appelbaum, eds.) pp. 1483‐1504. Blackwell Science, Malden, MA.
  Waisfisz, Q., Morgan, N.V., Savino, M., de Winter, J.P., van Berkel, C.G., Hoatlin, M.E., Ianzano, L., Gibson, R.A., Arwert, F., Savoia, A., Mathew, C.G., Pronk, J.C., and Joenje, H. 1999. Spontaneous functional correction of homozygous Fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nat. Genet. 22:379‐383.
  Walne, A.J., Vulliamy, T., Kirwan, M., Plagnol, V., and Dokal, I., 2013, Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. Am. J. Hum. Genet. 92:448‐453.
  Walne, A.J., Vulliamy, T., Marrone, A., Beswick, R., Kirwan, M., Masunari, Y., Al Qurashi, F., Aljurf, M., and Dokal, I. 2007. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase‐associated protein NOP10. Hum. Molec. Genet. 16:1619‐1629.
  Weaver, D.D., Mapstone, C.L., and Yu, P. 1986. The VATER association: Analysis of 46 patients. Am. J. Dis. Child. 140:225‐229.
  Williams, D.A., Bennett, C., Bertuch, A., Bessler, M., Coates, T., Corey, S., Dror, Y., Huang, J., Lipton, J., Olson, T.S., Reiss, U.M., Rogers, Z.R., Sieff, C., Vlachos, A., Walkovich, K., Wang, W., and Shimamura, A., 2014. Diagnosis and treatment of pediatric acquired aplastic anemia (AAA): An initial survey of the North American Pediatric Aplastic Anemia Consortium (NAPAAC). Pediatr. Blood Cancer 61:869‐874.
Key References
  Auerbach, A.D., Rogatko, A., and Schroeder‐Kurth, T.M. 1989. See above.
  Presents evidence from the International Fanconi Anemia Registry showing that the DEB test is a useful discriminator for FA.
  Giampietro, P.F., Davis, J.G., Adler‐Brecher, B., Verlander, P.C., Auerbach, A.D., and Pavlakis, S.G. 1993. The need for more accurate and timely diagnosis in Fanconi anemia: A report from the International Fanconi Anemia Registry. Pediatrics 91:1116‐1120.
  Discusses the need for clinicians to have increased awareness of the great variability in the FA phenotype and the need for ordering DEB testing to rule out a diagnosis of FA in pre‐anemic patients and patients without typical malformations.
  Auerbach, A.D. 2009. Fanconi anemia and its diagnosis. Mutat. Res. 668:4‐10.
  Presents an overview of current knowledge regarding the varied phenotypic manifestations of FA and procedures for diagnosis based upon abnormal DNA damage responses.
Internet Resources
  http://www.rockefeller.edu/fanconi/mutate
  Fanconi Anemia Mutation Database.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library