Oligonucleotide Microarrays for Clinical Diagnosis of Copy Number Variation and Zygosity Status

David T. Miller1, Yiping Shen1, Bai‐Lin Wu1

1 Harvard Medical School, Boston, Massachusetts
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 8.12
DOI:  10.1002/0471142905.hg0812s74
Online Posting Date:  July, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Detection of submicroscopic genomic copy number variation is now considered the first‐tier clinical test—in place of standard G‐banded karyotyping—in the evaluation of children with unexplained developmental delay, intellectual disability, autism spectrum disorders, or congenital anomalies. Fluorescence in situ hybridization (FISH) was the first molecular method for detection of submicroscopic genomic copy number variants (CNVs), but microarray‐based comparative genomic hybridization (array CGH) has a much higher diagnostic yield for these patients when compared to traditional cytogenetic methods such as karyotype and FISH. This unit focuses on oligonucleotide arrays, including updated information about detection of long contiguous stretches of homozygosity (LCSH) through inclusion of single‐nucleotide polymorphism (SNP) probes. Most clinical laboratories now offer arrays with some level of probe coverage throughout the genome, and many are offering detection of LCSH. Updated guidelines for array design and result interpretation are reviewed. Curr. Protoc. Hum. Genet. 74:8.12.1‐8.12.17. © 2012 by John Wiley & Sons, Inc.

Keywords: copy number variant; CNV; genomic imbalance; molecular diagnostics; array comparative genomic hybridization; CGH; aCGH

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • 100 to 150 ng/µl genomic DNA in TE buffer:
    • Sample (test) DNA (isolated from blood, see unit 14.4)
    • Control (reference) DNA (e.g., normal male or female):
    • NA18507 (Yoruban Male)
    • NA18517 (Yoruban Female)
    • NA12891 (European Male)
    • NA12878 (European Female)
    • NA18579 (Chinese Female)
  • Nuclease‐free water
  • 10× reaction buffer C (provided with Rsa I; Promega)
  • 10 U/µl Alu I (Promega)
  • 10 U/µl Rsa I (Promega)
  • QIAprep Spin Miniprep Kit (Qiagen; cat. nos. 27104, 27106) with Buffers PB, PE, and EB
  • Ethanol (denatured; Fisher)
  • BioPrime Array CGH Genomic Labeling System (Invitrogen; cat. no. 18095011), with:
    • 2.5× Random primers solution (octamers)
    • 40 U/µl exo‐Klenow fragment
    • Stop buffer
  • 10× dUTP (nucleotide mix; PerkinElmer)
  • 2′‐Deoxyuridine conjugated with cyanine 3 and cyanine 5 (Cy3‐dUTP and Cy5‐dUTP; PerkinElmer)
  • 1× TE buffer, pH 8.0 (Promega)
  • Oligonucleotide aCGH Hybridization kit, large volume (Agilent, 5188‐5380), containing:
    • 10× Blocking Agent
    • 2× Hybridization buffer
  • Cot‐1 DNA (Invitrogen)
  • Oligonucleotide aCGH wash buffers 1 and 2 (Agilent)
  • Spectrophotometer (e.g., NanoDrop ND‐1000, Thermo Fisher Scientific)
  • Thermal cycler
  • Centrifuge
  • 1.5‐ml tubes
  • Speedvac Concentrator
  • 37°C incubator
  • Microcon YM‐30 Centrifugal Filter Kit (Millipore; cat. no. 42410)
  • Microcentrifuge
  • Oligonucleotide microarray, e.g., Human Genome 244 k array (Agilent Technologies, G4411B)
  • Hybridization Oven (Agilent Technologies)
  • Coplin jar
  • Ozone detector (e.g., Teledyne Model 400E), optional
  • Ozone converter (e.g., Ozone Solutions “Ozone Interceptor”), optional
  • Array scanner (e.g., Agilent G2565AA or 2565 BA)
  • Computer workstation (e.g., Dell Optiplex GX745)
  • Feature Extraction software (included with purchase of array scanner)
  • CGH Analytics software (Agilent)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Baldwin, E.L., Lee, J.Y., Blake, D.M., Bunke, B.P., Alexander, C.R., Kogan, A.L., Ledbetter, D.H., and Martin, C.L. 2008. Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray. Genet. Med. 10:415‐429.
   Eichler, E.E. 2006. Widening the spectrum of human genetic variation. Nat. Genet. 38:911.
   Fan, Y.S., Jayakar, P., Zhu, H., Barbouth, D., Sacharow, S., Morales, A., Carver, V., Benke, P., Mundy, P., and Elsas, L.J. 2007. Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum. Mutat. 28:1124‐1132.
   Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y., Scherer, S.W., and Lee, C. 2004. Detection of large‐scale variation in the human genome. Nat. Genet. 36:949‐951.
   Itsara, A., Cooper, G.M., Baker, C., Girirajan, S., Li, J., Absher, D., Krauss, R.M., Myers, R.M., Ridker, P.M., Chasman, D.I., Mefford, H., Ying, P., Nickerson, D.A., and Eichler, E.E. 2009. Population analysis of large copy number variants and hotspots of human genetic disease. Am. J. Hum. Genet. 84:148‐161.
   Jacquemont, M.L., Sanlaville, D., Redon, R., Raoul, O., Cormier‐Daire, V., Lyonnet, S., Amiel, J., Le Merrer, M., Heron, D., de Blois, M.C., Prieur, M., Vekemans, M., Carter, N.P., Munnich, A., Colleaux, L., and Philippe, A. 2006. Array‐based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J. Med. Genet. 43:843‐849.
   Kearney, H.M., South, S.T., Wolff, D.J., Lamb, A., Hamosh, A., and Rao, K.W. 2011a. American College of Medical Genetics recommendations for the design and performance expectations for clinical genomic copy number microarrays intended for use in the postnatal setting for detection of constitutional abnormalities. Genet. Med. 13:676‐679.
   Kearney, H.M., Thorland, E.C., Brown, K.K., Quintero‐Rivera, F., and South, S.T. 2011b. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 13:680‐685.
   Komura, D., Shen, F., Ishikawa, S., Fitch, K.R., Chen, W., Zhang, J., Liu, G., Ihara, S., Nakamura, H., Hurles, M.E., Lee, C., Scherer, S.W., Jones, K.W., Shapero, M.H., Huang, J., and Aburatani, H. 2006. Genome‐wide detection of human copy number variations using high‐density DNA oligonucleotide arrays. Genome Res. 16:1575‐1584.
   Lee, C., Iafrate, A.J., and Brothman, A.R. 2007. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat. Genet. 39:S48‐S54.
   Manning, M. and Hudgins, L. 2007. Use of array‐based technology in the practice of medical genetics. Genet. Med. 9:650‐653.
   Manning, M., and Hudgins, L. 2010. Array‐based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet. Med. 12:742‐745.
   McCarroll, S.A., Kuruvilla, F.G., Korn, J.M., Cawley, S., Nemesh, J., Wysoker, A., Shapero, M.H., de Bakker, P.I., Maller, J.B., Kirby, A., Elliott, A.L., Parkin, M., Hubbell, E., Webster, T., Mei, R., Veitch, J., Collins, P.J., Handsaker, R., Lincoln, S., Nizzari, M., Blume, J., Jones, K.W., Rava, R., Daly, M.J., Gabriel, S.B., and Altshuler, D. 2008. Integrated detection and population‐genetic analysis of SNPs and copy number variation. Nat. Genet. 40:1166‐1174.
   Miller, D.T., Adam, M.P., Aradhya, S., Biesecker, L.G., Brothman, A.R., Carter, N.P., Church, D.M., Crolla, J.A., Eichler, E.E., Epstein, C.J., Faucett, W.A., Feuk, L., Friedman, J.M., Hamosh, A., Jackson, L., Kaminsky, E.B., Kok, K., Krantz, I.D., Kuhn, R.M., Lee, C., Ostell, J.M., Rosenberg, C., Scherer, S.W., Spinner, N.B., Stavropoulos, D.J., Tepperberg, J.H., Thorland, E.C., Vermeesch, J.R., Waggoner, D.J., Watson, M.S., Martin, C.L., and Ledbetter, D.H. 2010. Consensus statement: chromosomal microarray is a first‐tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86:749‐764.
   Ravnan, J.B., Tepperberg, J.H., Papenhausen, P., Lamb, A.N., Hedrick, J., Eash, D., Ledbetter, D.H., and Martin, C.L. 2006. Subtelomere FISH analysis of 11 688 cases: An evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J. Med. Genet. 43:478‐489.
   Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., Gonzalez, J.R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nisimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valesia, A., Woodward, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengo, L., Conrad, D.F., Estivill, X., Tyler‐Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., and Hurles, M.E. 2006. Global variation in copy number in the human genome. Nature 444:444‐454.
   Sagoo, G.S., Butterworth, A.S., Sanderson, S., Shaw‐Smith, C., Higgins, J.P., and Burton, H. 2009. Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta‐analysis of 19 studies and 13,926 subjects. Genet. Med. 11:139‐146.
   Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese‐Martin, C, Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y.‐H., Hicks, J., Spence, S.J., Lee, A.T., Puura, K., Lehtimaki, T., Ledbetter, D., Gregersen, P.K., Bregman, J., Sutcliffe, J.S., Jobanputra, V., Chung, W., Warburton, D., King, M.‐C., Skuse, D., Geschwind, D.H., Gilliam, T.C., Ye, K., and Wigler, M. 2007. Strong association of de novo copy number mutations with autism. Science 316:445‐449.
   Shaffer, L.G., Beaudet, A.L., Brothman, A.R., Hirsch, B., Levy, B., Martin, C.L., Mascarello, J.T., and Rao, K.W. 2007. Microarray analysis for constitutional cytogenetic abnormalities. Genet. Med. 9:654‐662.
   Shaikh, T.H. 2007. Oligonucleotide arrays for high‐resolution analysis of copy number alteration in mental retardation/multiple congenital anomalies. Genet. Med. 9:617‐625.
   Shaw‐Smith, C., Redon, R., Rickman, L., Rio, M., Willatt, L., Fiegler, H., Firth, H., Sanlaville, D., Winter, R., Colleaux, L., Bobrow, M., and Carter, N.P. 2004. Microarray based comparative genomic hybridisation (array‐CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J. Med. Genet. 41:241‐248.
   Shen, Y. and Wu, B.L. 2009. Microarray‐based genomic DNA profiling technologies in clinical molecular diagnostics (Review) Clin. Chem. 55:659‐669.
   Shen, Y., Irons, M., Miller, D.T., Cheung, S.W., Lip, V., Sheng, X., Tomaszewicz, K., Shao, H., Fang, H., Tang, H.S., Irons, M., Walsh, C.A., Platt, O., Gusella, J.F., and Wu, B.L. 2007. Development of a focused oligonucleotide‐array comparative genomic hybridization chip for clinical diagnosis of genomic imbalance. Clin. Chem. 53:2051‐2059.
   Shen, Y., Dies, K.A., Holm, I.A., Bridgemohan, C., Sobeih, M.M., Caronna, E.B., Miller, K.J., Frazier, J.A., Silverstein, I., Picker, J., Weissman, L., Raffalli, P., Jeste, S., Demmer, L.A., Peters, H.K., Brewster, S.J., Kowalczyk, S.J., Rosen‐Sheidley, B., McGowan, C., Duda, A.W. 3rd, Lincoln, S.A., Lowe, K.R., Schonwald, A., Robbins, M., Hisama, F., Wolff, R., Becker, R., Nasir, R., Urion, D.K., Milunsky, J.M., Rappaport, L., Gusella, J.F., Walsh, C.A., Wu, B.L., Miller, D.T.; Autism Consortium Clinical Genetics/DNA Diagnostics Collaboration. 2010. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics 125:e727‐e735.
   Shevell, M., Ashwal, S., Donley, D., Flint, J., Gingold, M., Hirtz, D., Majnemer, A., Noetzel, M., and Sheth, R.D. 2003. Practice parameter: Evaluation of the child with global developmental delay: Report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology 60:367‐380.
   Stankiewicz, P. and Beaudet, A.L. 2007. Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr. Opin. Genet. Dev. 17:182‐192.
   Van Vooren, S., Coessens, B., De Moor, B., Moreau, Y., and Vermeesch, J.R. 2007. Array comparative genomic hybridization and computational genome annotation in constitutional cytogenetics: Suggesting candidate genes for novel submicroscopic chromosomal imbalance syndromes. Genet. Med. 9:642‐649.
   Vermeesch, J.R., Fiegler, H., de Leeuw, N., Szuhai, K., Schoumans, J., Ciccone, R., Speleman, F., Rauch, A., Clayton‐Smith, J., Van Ravenswaaij, C., Sanlaville, D., Patsalis, P.C., Firth, H., Devriendt, K., and Zuffardi, O. 2007. Guidelines for molecular karyotyping in constitutional genetic diagnosis. Eur. J. Hum. Genet. 15:1105‐1114.
   Vissers, L.E., de Vries, B.B., Osoegawa, K., Janssen, I.M., Feuth, T., Choy, C.O., Straatman, H., Van Der Vliet, W., Huys, E.H., van Rijk, A., Smeets, D., van Ravenswaaij‐Arts, C.M., Knoers, N.V., Van Der Burgt, I., de Jong, P.J., Brunner, H.G., van Kessel, A.G., Schoenmakers, E.F., and Veltman, J.A. 2003. Array‐based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am. J. Hum. Genet. 73:1261‐1270.
   Weiss, L.A., Shen, Y., Korn, J.M., Arking, D.E., Miller, D.T., Fossdal, R., Saemundsen, E., Stefansson, H., Ferreira, M.A., Green, T., Platt, O.S., Ruderfer, D.M., Walsh, C.A., Altshuler, D., Chakravarti, A., Tanzi, R.E., Stefansson, K., Santangelo, S.L., Gusella, J.F., Sklar, P., Wu, B.L., and Daly, M.J. 2008. Association between Microdeletion and Microduplication at 16p11.2 and Autism. N. Engl. J. Med. 358:667‐675.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library