Overview of Molecular Genetic Diagnosis

Shuko Harada1, Bruce R. Korf1

1 University of Alabama at Birmingham, Birmingham, Alabama
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 9.1
DOI:  10.1002/0471142905.hg0901s76
Online Posting Date:  January, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit describes the overview and strategies for molecular genetic diagnosis. Molecular genetic testing is typically used to detect changes in a single gene, and includes direct sequence analysis and detection of large deletion/duplication. Occasionally linkage analysis is still used when the gene is not known. Direct mutation analysis is possible if the gene responsible for a disorder has been identified. Genetic linkage analysis is used when polymorphic markers are available that are closely linked to a disease gene but the gene itself has not been cloned, or when it is difficult or impossible to detect mutations in the gene. For direct mutation analysis, the unit offers a review of the types of mutations that can be detected and the strategies that can be employed for their detection. The unit then describes the types of disorders that are best suited for linkage‐based analysis and offers guidance for interpreting the data. The unit also overviews recent progress on high‐throughput sequencing system and its possibility for its clinical application. Curr. Protoc. Hum. Genet. 76:9.1.1‐9.1.7. © 2013 by John Wiley & Sons, Inc.

Keywords: gene; mutation; DNA sequencing; linkage analysis; next‐generation sequencing; GWAS (genome‐wide association study)

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Direct Analysis of Gene Mutation
  • Linkage‐Based Testing
  • Conclusion
  • Literature Cited
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Ashley, C.T. Jr. and Warren, S.T. 1995. Trinucleotide repeat expansion and human disease. Annu. Rev. Genet. 29:703‐728.
   Bagnall, R.D., Giannelli, F., and Green, P.M. 2006. Int22h‐related inversions causing hemophilia A: A novel insight into their origin and a new more discriminant PCR test for their detection. J. Thromb. Haemost. 4:591‐598.
   Bailey‐Wilson, J.E. and Wilson, A.F. 2011. Linkage analysis in the next‐generation sequencing era. Hum. Hered. 72:228‐236.
   Beggs, A.H., Koenig, M., Boyce, F.M., and Kunkel, L.M. 1990. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum. Genet. 86:45‐48.
   Bridge, P.J. 1994. The Calculation of Genetic Risks. Johns Hopkins University Press, Baltimore, Maryland.
   Caskey, C.T., Pizzuti, A., Fu, Y.H., Fenwick, R.G. Jr., and Nelson, D.L. 1992. Triplet repeat mutations in human disease. Science 256:784‐789.
   Chamberlain, J.S., Gibbs, R.A., Ranier, J.E., Nguyen, P.N., and Caskey, C.T. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 16:11141‐11156.
   Florijn, R.J., Bonden, L.A., Vrolijk, H., Wiegant, J., Vaandrager, J.W., Baas, F., den Dunnen, J.T., Tanke, H.J., van Ommen, G.J., and Raap, A.K. 1995. High‐resolution DNA Fiber‐FISH for genomic DNA mapping and colour bar‐coding of large genes. Hum. Mol. Genet. 4:831‐836.
   Fu, Y.H., Kuhl, D.P.A., Pizzuti, A., Pieretti, M., Sutcliffe, J.S., Richards, S., Verkerk, A.J.M.H., Holden, J.J.A., Fenwick, R.G Jr., Warren, S.T., Oostra, B.A, Nelson, D.L, and Caskey, C.T. 1991. Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell 67:1047‐1058.
   Hadd, A.G., Laosinchai‐Wolf, W., Novak, C.R., Badgett, M.R., Isgur, L.A, Goldrick, M., and Walkerpeach, C.R. 2004. Microsphere bead arrays and sequence validation of 5/7/9T genotypes for multiplex screening of cystic fibrosis polymorphisms. J. Mol. Diagn. 6:348‐355.
   Harley, H.G., Rundle, S.A., MacMillan, J.C., Myring, J., Brook, J.D., Crow, S., Reardon, W., Fenton, I., Shaw, D.J., and Harper, P.S. 1993. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet. 52:1164‐1174.
   Hernan, I., Borràs, E., de Sousa Dias, M., Gamundi, M.J., Mañé, B., Llort, G., Agúndez, J.A, Blanca, M., and Carballo, M. 2012. Detection of genomic variations in BRCA1 and BRCA2 genes by long‐range PCR and next‐generation sequencing. J. Mol. Diagn. 14:286‐293.
   Joncourt, F., Neuhaus, B., Jostarndt‐Foegen, K., Kleinle, S., Steiner, B., and Gallati, S. 2004. Rapid identification of female carriers of DMD/BMD by quantitative real‐time PCR. Hum. Mutat. 23:385‐391.
   Kazazian, H.H Jr., Wong, C., Youssoufian, H., Scott, A.F., Phillips, D.G., and Antonarakis, S.E. 1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164‐166.
   Klein, R.J., Zeiss, C., Chew, E.Y., Tsai, J.Y., Sackler, R.S., Haynes, C., Henning, A.K., SanGiovanni, J.P., Mane, S.M., Mayne, S.T., Bracken, M.B., Ferris, F.L., Ott, J., Barnstable, C., and Hoh, J. 2005. Complement factor H polymorphism in age‐related macular degeneration. Science 308:385‐389.
   Koenig, M., Hoffman, E.P., Bertelson, C.J., Monaco, A.P., Feener, C., and Kunkel, L.M. 1987. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509‐517.
   Lakich, D., Kazazian, H.H. Jr., Antonarakis, S.E, and Gitschier, J. 1993. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat. Genet. 5:236‐241.
   Liew, M., Pryor, R., Palais, R., Meadows, C., Erali, M., Lyon, E., and Wittwer, C. 2004. Genotyping of single‐nucleotide polymorphisms by high‐resolution melting of small amplicons. Clin. Chem. 50:1156‐1164.
   Loman, N.J., Misra, R.V., Dallman, T.J., Constantinidou, C., Gharbia, S.E, Wain, J., and Pallan, M.J. 2012. Performance comparison of benchtop high‐throughput sequencing platforms. Nat. Biotechnol. In press.
   Monaco, A.P., Bertelson, C.J., Liechti‐Gallati, S., Moser, H., and Kunkel, L.M. 1989. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2:90‐95.
   Nussbaum, R.L., McInnes, R.R., and Willard, H.F. 2007. Chapter 11. Principles of molecular disease: Lessons from the hemoglobinopathies. In Thompson & Thompson Genetics in Medicine, Seventh Edition. pp. 323‐343. Saunders, Philadelphia.
   Prior, T.W. and Bridgeman, S.J. 2005. Experience and strategy for the molecular testing of Duchenne muscular dystrophy. J. Mol. Diagn. 7:317‐326.
   Roberts, R.G., Barby, T.F.M., Manners, E., Bobrow, M., and Bentley, D.R. 1991. Direct detection of dystrophin gene rearrangements by analysis of dystrophin mRNA in peripheral blood lymphocytes. Am. J. Hum. Genet. 49:298‐310.
   Roest, P.A., Roberts, R.G., Sugino, S., van Ommen, G.J, and den Dunnen, J.T 1993. Protein truncation test (PTT) for rapid detection of translation‐terminating mutations. Hum. Mol. Genet. 2:1719‐1721.
   Rossetti, L.C., Radic, C.P., Larripa, I.B., and De Brasi, C.D. 2008. Developing a new generation of tests for genotyping hemophilia‐causative rearrangements involving int22h and int1h hotspots in the factor VIII gene. J. Thromb. Haemost. 6:830‐836.
   Sanger, F., Nicklen, S., and Coulson, A.R. 1977. DNA sequencing with chain‐terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74:5463‐5467.
   Schouten, J.P., McElgunn, C.J., Waaijer, R., Zwi‐jnenburg, D., Diepvens, F., and Pals, G. 2002. Relative quantification of 40 nucleic acid sequences by multiplex ligation‐dependent probe amplification. Nucleic Acids Res. 30:e57.
   Shuber, A.P., Skoletsky, J., Stern, R., and Handelin, B.L. 1993. Efficient 12‐mutation testing in the CFTR gene: A general model for complex mutation analysis. Hum. Mol. Genet. 2:153‐158.
   Steensma, D.P. 2006. JAK2 V617F in myeloid disorders: Molecular diagnostic techniques and their clinical utility: A paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. J. Mol. Diagn. 8:397‐411.
   ten Bosch, J.R and Grody, W.W 2008. Keeping up with the next generation: Massively parallel sequencing in clinical diagnostics. J. Mol. Diag. 10:484‐492.
   Voelkerding, K.V., Dames, S., and Durtschi, J.D. 2010. Next‐generation sequencing for clinical diagnostics‐principles and application to targeted resequencing for hypertrophic cardiomyopathy: A paper from the 2009 William Beaumont Hospital Symposium on molecular pathology. J. Mol. Diagn. 12:539‐551.
   Wallace, M.R., Andersen, L.B., Saulino, A.M., Gregory, P.E., Glover, T.W., and Collins, F.S. 1991. A de novo Alu insertion results in neurofibro‐matosis type 1. Nature 353:864‐866.
   Wellcome Trust Case Control Consortium 2007. Genome‐wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661‐678.
   Wittwer, CT. 2009. High‐resolution DNA melting analysis: Advancements and limitations. Hum. Mutat. 30:857‐859.
   Wu, J., Feng, T., Xu, R., Ye, F., Petersen, B.E, Cheng, L., and Zhang, D.Y. 2008. Chapter 3 Diagnostic methodology and technology. Molecular genetic pathology (Eds. Cheng, L. and Zhang, D. Y.). Humana Press. New York, NY. pp 65‐131.
   Young, I. 1991. Introduction to Risk Calculation in Genetic Counseling. Oxford University Press, Oxford and New York.
PDF or HTML at Wiley Online Library