Spinal Muscular Atrophy: Overview of Molecular Diagnostic Approaches

Thomas W. Prior1, Narasimhan Nagan2

1 Department of Pathology, The Ohio State University, Columbus, Ohio, 2 Integrated Genetics, Laboratory Corporation of America Holdings, Westborough, Massachusetts
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 9.27
DOI:  10.1002/0471142905.hg0927s88
Online Posting Date:  January, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease and the most common genetic cause of infant mortality, affecting ∼1 in 10,000 live births. The disease is characterized by progressive symmetrical muscle weakness resulting from the degeneration and loss of anterior horn cells in the spinal cord and brain stem nuclei. The disease is classified on the basis of age of onset and clinical course. SMA is caused by mutations in the telomeric copy of the survival motor neuron 1 (SMN1) gene, but all patients retain a centromeric copy of the gene, SMN2. The homozygous absence of the SMN1 exon 7 has been observed in the majority of patients and is being utilized as a reliable and sensitive SMA diagnostic test. In the majority of cases, the disease severity correlates inversely with an increased SMN2 gene copy number. Carrier detection, in the deletion cases, relies on the accurate determination of the SMN1 gene copies. Since SMA is one of the most common lethal genetic disorders, with a carrier frequency of 1 in 40 to 1 in 60, direct carrier dosage testing has been beneficial to many families. This unit attempts to highlight the molecular genetics of SMA with a focus on the advantages and limitations of the current molecular technologies. © 2016 by John Wiley & Sons, Inc.

Keywords: spinal muscular atrophy; survival motor neuron; SMN1; SMN2; genetic testing; carrier testing

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Molecular Genetics
  • Genotype‐Phenotype Association
  • Pathogenesis
  • Terminology
  • Testing Strategies
  • Methods
  • Interpretations
  • Conclusions
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  ACOG Committee Opinion. 2009. Spinal muscular atrophy. Obstet. Gynecol. 113:1194‐1196. doi: 10.1097/AOG.0b013e3181a6d03a
  Alias, L., Bernal, S., Fuentes‐Prior, P., Barceló, M.J., Also, E., Martinez‐Hernández, R., Rodriguez‐Alvarez, F.J., Martin, Y., Aller, E., Grau, E., Peciña, A., Antiñolo, G., Galán, E., Rosa, A.L., Fernández‐Burriel, M., Borrego, S., Millán, J.M., Hernández‐Chico, C., Baiget, M., and Tizzano, E. 2009. Mutation update of spinal muscular atrophy in Spain: Molecular characterization of 745 unrelated patients and identification of four novel mutations in the SMN1 gene. Hum. Genet. 125:29‐39. doi: 10.1007/s00439-008-0598-1
  Anhuf, D., Eggermann, T., Rudnik‐Schoneborn, S., and Zerres, K. 2003. Determination of SMN1 and SMN2 copy number using Taqman technology. Hum. Mutat. 22:74‐78. doi: 10.1002/humu.10221
  Arany, Z.P. 2008. High‐throughput quantitative real‐time PCR. Curr. Protoc. Hum. Genet. 58:11.10.1‐11.10.11. doi: 10.1002/0471142905.hg1110s58
  Bebee, T.W., Dominguez, C.E., and Chandler, D.S. 2012. Mouse models of SMA: Tools for disease characterization and therapeutic development. Hum. Genet. 131:1277‐1293. doi: 10.1007/s00439-012-1171-5
  Burglen, L., Lefebvre, S., Clermont, O., Burlet, P., Viollet, L., Cruaud, C., Munnich, A., and Melki, J. 1996. Structure and organization of the human survival motor neuron (SMN) gene. Genomics 32:479‐482. doi: 10.1006/geno.1996.0147
  Campbell L., Potterk, A., Ignatiusk, J., Dubowitzk, V., and Davies, K. 1997. Genomic variation and gene conversion in spinal muscular atrophy: Implications for disease process and clinical phenotype. Am. J. Hum. Genet. 61:40‐50. doi: 10.1086/513886
  Cartegni, L. and Kraniner, A.R. 2002. Disruption of an SF2/ASF‐dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30:377‐384. doi: 10.1038/ng854
  Cheng, S., Fockler, C., Barnes, W.M., and Higuchi, R. 1994. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Acad. Sci. USA 91:5695‐5699.
  Coovert, D.D., Le, T.T., McAndrew, P.E., Strasswimmer, J., Crawford, T.O., Mendell, J.R., Coulson, S.E., Androphy, E.J., Prior, T.W., and Burghes, A.H.M. 1997. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6:1205‐1214. doi: 10.1093/hmg/6.8.1205
  den Dunnen, J.T. and White, S.J. 2006. MLPA and MAPH: Sensitive detection of deletions and duplications. Curr. Protoc. Hum. Genet. 51:7.14.1‐7.14.20. doi: 10.1002/0471142905.hg0714s51
  Eggermann, T., Eggermann, K., Elbracht, M., Zerres, K., and Rudnik‐Schoneborn, S. 2008. A new splice site mutation in the SMN1 gene causes discrepant results in SMN1 deletion screening approaches. Neuromusc. Disord. 18:146‐149. doi: 10.1016/j.nmd.2007.10.003.
  Hendrickson, B.C., Donohoe, C., Akmaev, V.R., Sugarman, E.A., Labrousse, P., Boguslavskivy, L., Flynn, L., Rohlfs, E.M., Walker, A., Alitto, B., Sears, C., and Scholl, T. 2009. Differences in SMN1 allele frequencies among ethnic groups within North America. J. Med. Genet. 46:641‐644. doi: 10.1136/jmg.2009.066969
  Hoffman, Y., Lorson, C.L., Stamm, S., Androphy, E.J., and Wirth, B. 2000. Htra2‐beta 1 stimulates an exonic splicing enhancer and can restore full‐length SMN expression to survival motor neuron 2 (SMN2). Proc. Natl. Acad. Sci. U.S.A. 97:9618‐9623. doi: 10.1073/pnas.160181697
  Huang, C.‐H., Chang, Y.‐Y., and Chen, C.‐H. 2007. Copy number analysis of survival motor neuron genes by multiplex ligation‐dependent probe amplification. Genet. Med. 9:241‐248. doi: 10.1097/GIM.0b013e31803d35bc
  Jarcho, J. 2000. Restriction fragment length polymorphism analysis. Curr. Protoc. Hum. Genet. 1:2.7.1‐2.7.15. doi: 10.1002/0471142905.hg0207s01
  Kashima, T. and Manley, J.L. 2003. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34:460‐463. doi: 10.1038/ng1207
  Lefebvre, S., Burglen, L., Reboullet, S., Clermont, O., Viollet, L., Benichou, B., Craud, C., Millasseau, P., Zeviani, M., Le Paslier, D., Frezal, J., Cohen, D., Weissenbach, J., Munnich, A., and Melki, J. 1995. Identification and characterization of a spinal muscular atrophy‐determining gene. Cell 80:155‐165. doi: 10.1016/0092-8674(95)90460-3
  Lefebvre, S., Burlet, P., and Liu, Q. 1997. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16:265‐269. doi: 10.1038/ng0797-265
  Liu, Q., Fischer, U., Wang, F., and Drefuss, G. 1997. The spinal muscular atrophy gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90:1013‐1021. doi: 10.1016/S0092-8674(00)80367-0
  Lorson, C.L. and Androphy, E.J. 2000. An exonic enhancer is required for inclusion of an essential exon in the SMA‐determining gene SMN. Hum. Mol. Genet. 9:259‐265. doi: 10.1093/hmg/9.2.259
  Lorson, C.L., Hahnen, E., Androphy, E.J., and Wirth, B. 1999. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. U.S.A. 96:6307‐6311. doi: 10.1073/pnas.96.11.6307
  Lorson, C.L., Strasswimmer, J., Yao, J.M., Baleja, J.D., Hahnen, E., Wirth, B., Le, T., Burghes, A.H., and Androphy, E.J. 1998. Smn Oligomerization defect correlates with spinal muscular atrophy severity. Nature Genet. 19:63‐66. doi: 10.1038/ng0598‐63
  Luo, M., Liu, L., Peter, I., Zhu, Z., Scott, S.A., Zhao, G., Eversley, C., Kornreich, R., Desnick, R.J., and Edelmann, L. 2014. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan‐ethnic carrier screening for spinal muscular atrophy. Genet. Med. 16:149‐156. doi: 10.1038/gim.2013.84
  Mailman, M.D., Heinz, J.W., Papp, A.C., Snyder, P.J., Sedra, M.S., Wirth, B., Burghes, A.H.M., and Prior, T.W. 2002. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet. Med. 4:20‐26. doi: 10.1097/00125817-200201000-00004
  McAndrew, P.E., Parsons, D.W., Simard, L.R., Rochette, C., Ray, P.N., Mendell, J.R., Prior, T.W., and Burghes, A.H.M. 1997. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am. J. Hum. Genet. 60:1411‐1422. doi: 10.1086/515465
  Meldrum, C., Scott, C., and Swoboda, K.J.. 2007. Spinal muscular atrophy genetic counseling access and genetic knowledge: Parents' perspectives. J Child Neurol. 8:1019‐1026. doi: 10.1177/0883073807305672
  Melki, J., Sheth, P., Abdelhak, S., Burlet, P., Bachelot, M.F., Lathrop, M.G., Frezal, J., and Munnich, A. 1990. Mapping of acute (type I) spinal muscular atrophy to chromosome 5q12‐q14: The French spinal muscular atrophy investigators. Lancet 336:271‐273. doi: 10.1016/0140-6736(90)91803-I
  Monani, U.R. 2005. Spinal muscular atrophy: a deficiency in a ubiquitous protein: a motor neuron‐specific disease. Neuron 48(6):885‐996. doi: 10.1016/j.neuron.2005.12.001
  Munstat, T.L. and Davies, K.E. 1992. International SMA consortium meeting. Neuromuscular Disord. 2:423‐428. doi: 10.1016/S0960-8966(06)80015-5
  Ogino, S. and Wilson, R.B. 2002. Genetic testing and risk assessment for spinal muscular atrophy (SMA). Hum. Genet. 111:477‐500. doi: 10.1007/s00439-002-0828-x
  Ogino, S. and Wilson, R.B. 2004. Spinal muscular atrophy: Molecular genetics and diagnostics. Expert Rev. Mol. Diagn. 4:15‐29. doi: 10.1586/14737159.4.1.15
  Oprea, G.E., Krober, S., McWhorter, M.L., Rossoll, W., Muller, S., Krawczak, M., Bassell, G.J., Beattie, C.E., and Wirth, B. 2008. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320:524‐527. doi: 10.1126/science.1155085
  Parsons, D.W., McAndrew, P.E., Iannaccone, S.T., Mendell, J.R., Burghes, A.H.M., and Prior, T.W. 1998. Intragenic telSMN mutations: Frequency, distribution, evidence of a founder effect and modification of spinal muscular atrophy phenotype by cenSMN copy number. Am. J. Hum. Genet. 63:1712‐1723. doi: 10.1086/302160
  Paushkin, S., Gubitz, A.K., Massenet, S., and Dreyfuss, G. 2002. The SMN complex, an assemblyosome of ribonucleoproteins. Curr. Opin. Cell. Biol. 14:305‐312. doi: 10.1016/S0955-0674(02)00332-0
  Pearn, J. 1978. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J. Med. Genet. 15:409‐413. doi: 10.1136/jmg.15.6.409
  Prior, T.W. 2008. Carrier screening for spinal muscular atrophy. 2008. Genet. Med. 10:840‐842. doi: 10.1097/GIM.0b013e318188d069
  Prior, T.W., Krainer, A.R., Hua, Y., Swoboda, K.J., Snyder, P.J., Bridgeman, S.J., Burghes, A.H.M., and Kissel, J.T. 2009. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am. J. Hum. Genet. 85:408‐413. doi: 10.1016/j.ajhg.2009.08.002
  Prior, T.W., Nagan, N., Sugarman, E.A., Dev Batish, S., and Braastad, C., 2011. Technical standards and guidelines for spinal muscular atrophy. Genet. Med. 13:686‐693. doi: 10.1097/GIM.0b013e318220d523
  Prior, T.W., Swoboda, K.J., Scott, H.D., and Hejmanowski, A.Q. 2004. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am. J. Med. Genet. A. 130:207‐310.
  Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier‐Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H.L. 2015. Standards and guidelines for the interpretation of sequence variations: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association of Molecular Pathology. Genet. Med. 17:405‐423. doi: 10.1038/gim.2015.30
  Rossoll, R., Jablonka, S., Andreassi, C., Kroning, A., Karle, K., Monani, U.R., and Sendtner, M. 2003. Smn, the spinal muscular atrophy‐determining gene product modulates axon growth and localization of β‐actin mRNA in growth cones of motoneurons. J. Cell Biol. 163:801‐812. doi: 10.1083/jcb.200304128
  Smith, M., Calabro, V., Chong, B., Gardiner, N., Cowie, S., and Du Sart, D. 2007. Population screening and cascade testing for carriers of SMA. Eur. J. Hum. Genet. 15:759‐766. doi: 10.1038/sj.ejhg.5201821
  Sugarman, E.A., Nagan, N., Zhu, H., Akmaev, V.R., Zhou, Z., Rholfs, E.M., Flynn, K., Hendrickson, B.C., Scholl, T., Sirko‐Osadsa, D.A., and Allitto, B.A. 2012. Pan‐ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: Clinical laboratory analysis of >72,400 specimens. Eur. J. Hum. Genet. 20:27‐32. doi: 10.1038/ejhg.2011.134
  van der Steege, G., Grootscholten, P., van der Vlies, P., Draaijers, T.G., Osinga, J., Cobben, J.M., Scheffer, H., and Buys, C. 1995. PCR‐based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy. Lancet 345:985‐986. doi: 10.1016/S0140-6736(95)90732-7
  Wirth, B. 2000. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy. Hum. Mutat. 15:228‐237. doi: 10.1002/(SICI)1098-1004(200003)15:3<228::AID-HUMU3>3.0.CO;2-9
  Wirth, B., Herz, M., Wetter, A., Moskau, S., Hahnen, E., Rudnik‐Schoneborn, S., Wienker, T., and Zerres, K. 1999. Quantitative analysis of survival motor neuron copies: Identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype‐phenotype correlation, and implications for genetic counseling. Am. J. Hum. Genet. 64:1340‐1356. doi: 10.1086/302369
  Wirth, B., Schmidt, T., Hahnen, E., Rudnik‐Schoneborn, S., Krawczak, M., Muller‐Myhsok, B., Schonling, J., and Zerres, K. 1997. De novo rearrangements found in 2% of index patients with spinal muscular atrophy: Mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling. Am. J. Hum. Genet. 61:1102‐1111. doi: 10.1086/301608
  Yong, J., Wan, L., and Dreyfuss, G. 2004. Why do cells need an assembly machine for RNA‐protein complexes? Trends Cell. Biol. 14:226‐232. doi: 10.1016/j.tcb.2004.03.010
  Zerres, K. and Rudnik‐Schoneborn, S. 1995. Natural history in proximal spinal muscular atrophy: Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch. Neurol. 52:518‐523. doi: 10.1001/archneur.1995.00540290108025
   Zhang, H.L., Pan, F., Hong, D., Shenoy, S.M., Singer, R.H., and Bassell, G.J. 2003. Active transport of the survival motor neuron protein and the role of exon‐7 in cytoplasm localization. J. Neurosci. 23:6627‐6637.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library