Gene Transfer to Arteries

Levent M. Akyürek1, Hong San1, Elizabeth G. Nabel1, Ripudamanjit Singh2, Robert D. Simari2

1 National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, 2 Mayo Clinic and Foundation, Rochester, Minnesota
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 13.1
DOI:  10.1002/0471142905.hg1301s31
Online Posting Date:  February, 2002
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit provides a set of protocols for introducing recombinant genes into normal, injured, and atherosclerotic arteries. The protocols include animal preparation, surgical techniques, and delivery systems. Protocols describe gene delivery to normal, injured, and stented porcine iliofemoral arteries, employing a double balloon infusion catheter to deliver the vector. Another basic protocol describes gene delivery to atherosclerotic arteries using a hyperlipidemic doubleÔÇÉinjury rabbit model, and requires surgical exposure of the artery and instillation of the gene vector via a catheter. Additional protocols describe gene delivery to normal and injured murine carotid and femoral arteries. An describes a percutaneous method for arterial gene delivery. These protocols may be adapted to deliver genes to either injured or noninjured atherosclerotic arteries.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Surgical Gene Delivery to Porcine Arteries
  • Basic Protocol 2: Surgical Gene Delivery to Stented Porcine Iliac Arteries
  • Basic Protocol 3: Surgical Gene Delivery to Atherosclerotic Rabbit Iliac Arteries
  • Basic Protocol 4: Surgical Gene Delivery to Normal Murine Carotid Arteries
  • Basic Protocol 5: Surgical Gene Delivery into Injured Murine Femoral Arteries
  • Alternate Protocol 1: Percutaneous Gene Delivery to Arteries
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Surgical Gene Delivery to Porcine Arteries

  Materials
  • Juvenile domestic pig (3 months old; 15 to 25 kg) of either sex
  • Aspirin
  • Telazol
  • Xylazine
  • 1% isoflurane
  • Phosphate‐buffered saline (PBS; appendix 2D), sterile
  • Viral or nonviral vector encoding recombinant gene ( Chapter 12) or transduced endothelial or smooth muscle cells in suspension (0.8 ml total volume for each artery; see )
  • Sterile surgical facilities
  • Endotracheal tube (suitable for use with pig) and apparatus for delivering 1% isoflurane anesthesia
  • Standard surgical instruments
  • Balfour retractor
  • 2–0 silk ties
  • Double balloon catheter(s) (USCI Bard; one catheter for each artery)
  • Pressure transducer(s) and hemodynamic monitor
  • 1–0 vicryl sutures
NOTE: All surgical instruments must be sterile and all procedures are to be performed in a sterile manner unless otherwise specified.

Basic Protocol 2: Surgical Gene Delivery to Stented Porcine Iliac Arteries

  Materials
  • PBS ( appendix 2D), sterile
  • Viral or nonviral vector encoding recombinant gene (Chapter 12) solution
  • 3.5‐mm NC Ranger angioplasty‐balloon catheter mounted with stent (7‐cell, 16‐mm NIR stent, Boston Scientific)
  • Additional reagents and equipment to surgically expose and isolate the iliofemoral artery (see protocol 1)

Basic Protocol 3: Surgical Gene Delivery to Atherosclerotic Rabbit Iliac Arteries

  Materials
  • New Zealand white rabbits (3 to 4 kg) of either sex
  • Aspirin
  • Ketamine
  • Xylazine
  • 1% isoflurane
  • 0.5% cholesterol/2.3% peanut oil rabbit chow (Purina Test Diets)
  • 10 U/ml heparin
  • Phosphate‐buffered saline (PBS; appendix 2D), sterile
  • Viral or nonviral vector encoding recombinant gene (0.7 ml total volume; see )
  • Sterile surgical facilities
  • Endotracheal tube (suitable for use with rabbit) and apparatus for delivering 1% isoflurane anesthesia
  • Standard surgical instruments
  • 2–0 and 4–0 silk ties
  • 3F Fogarty balloon catheters (Baxter)
  • 2–0 PDS suture
  • Rabbit collar
  • Balfour retractor
  • No. 11 scalpel
  • Human angioplasty balloon catheter(s) (2‐ to 3‐mm‐sized balloons)
  • Pressure transducer(s) and hemodynamic monitor
  • 5–0 prolene suture
  • 2–0 vicryl suture
NOTE: All surgical instruments must be sterile and all procedures are performed in a sterile manner unless otherwise specified.

Basic Protocol 4: Surgical Gene Delivery to Normal Murine Carotid Arteries

  Materials
  • Adult C57Bl/6 mice (25 to 35 g)
  • Ketamine
  • Xylazine
  • Normal saline
  • Viral vector encoding recombinant gene (10 µl per artery)
  • M‐199 medium (Invitrogen‐Life Technologies)
  • Enrofloxacin (Bayer Corporation)
  • Lactated Ringers solution (Baxter Healthcare)
  • Sterile surgical facilities
  • 25‐G and 33‐G needles
  • Surgical microdissecting microscope
  • Surgical scalpel blade, no. 15
  • Agricola microdissecting retractor
  • Portable cautery unit
  • 26‐mm Straight Schwartz Micro‐Serrefines microvascular clamps (Roboz Surgical Instruments)
  • 6–0 silk sutures
  • Microinjection syringe
  • 7–0 prolene sutures
  • Microdissecting scissors
  • Silicone tubing (0.12‐in. i.d., 0.025‐in. o.d.; Helix Medical)
  • 8–0 vicryl sutures
  • Nexabond topical skin closure system
NOTE: All surgical instruments must be sterile and all procedures are to be performed in a sterile manner unless otherwise specified.

Basic Protocol 5: Surgical Gene Delivery into Injured Murine Femoral Arteries

  Material
  • Heparin
  • 8‐week‐old C57Bl/6 mice (25 to 30 g) of either sex
  • Xylazine
  • Ketamine
  • Sterile surgical facilities
  • Dissecting microscope (e.g., X6 to X25 stereomicroscope WILD M650, Wild Heerbrugg)
  • 37°C warm plate
  • Standard surgical instruments
  • Guide wire (0.010‐in. o.d; ACS Hi‐Torque Intermediate)
  • Fine plastic tubing (0.010‐in. i.d., 0.012‐in. o.d.; VWR)
  • 6–0 silk tie (Ethicon)
  • Auto‐injection device (e.g., Model 55‐1111, Harvard Apparatus)
  • Pressure transducer and hemodynamic monitor
  • Skin staples (e.g., Autoclip 9 mm, Becton Dickinson)
NOTE: All surgical instruments must be sterile and all procedures are to be performed in a sterile manner unless otherwise specified.

Alternate Protocol 1: Percutaneous Gene Delivery to Arteries

  • Fluoroscopic facilities
  • 9F coronary guiding catheter (JR4 configuration)
NOTE: All surgical instruments must be sterile and all procedures are to be performed in a sterile manner unless otherwise specified.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Akyürek, L.M., Yang, Z.Y., Aoki, K., San, H., Nabel, G.J., Parmacek, M.S., and Nabel, E.G. 2000. SM22alpha promoter targets gene expression to vascular smooth muscle cells in vitro and in vivo. Mol. Med. 6:983‐991.
   Akyürek, L.M., Nallamshetty, S., Aoki, K., San, H., Yang, Z.Y., Nabel, G.J., and Nabel, E.G. 2001. Coexpression of guanylate kinase with thymidine kinase enhances prodrug cell killing in vitro and suppresses vascular smooth muscle cell proliferation in vivo. Mol. Ther. 3:779‐786.
   Barr, E., Carroll, J., Kalynych, A.M., Tripathy, S.K., Kozarsky, K., Wilson, J.M., and Leiden, J.M. 1994. Efficient catheter‐mediated gene transfer into the heart using replication‐defective adenovirus. Gene Therapy 1:51‐58
   Chang, M.W., Barr, E., Seltzer, J., Jiang, Y.‐Q., Nabel, G.J., Nabel, E.G., Parmacek, M.S., and Leiden, J.M. 1995. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 267:518‐522
   Chapman, G.D., Lim, C.S., Gammon, R.S., Culp, S.C., Desper, J.S., Bauman, R.P., Swain, J.L., and Satck, R.S. 1992. Gene transfer into coronary arteries of intact animals with a percutaneous balloon catheter. Circ. Res. 71:27‐33
   Feldman, L.J., Steg, P.G., Zheng, L.P., Chen, D., Kearney, M., McGarr, S.E., Barry, J.J., Dedieu, J., Perricaudet, M., and Isner, J.M. 1995. Low‐efficiency of percutaneous adenovirus‐mediated arterial gene transfer in the atherosclerotic rabbit. J. Clin. Invest. 95:2662‐2671
   Flugelman, M.Y., Jaklitsch, M.T., Newman, K.D., Cascells, W., Bratthauer, G.L., and Dichek, D.A. 1992. Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation 85:1110‐1117
   French, B.A., Mazur, W., Ali, N.M., Geske, R.S., Finnigan, J.P., Rodgers, G.P., Roberts, R., and Raizner, A.E. 1994. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis. Circulation 90:2402‐2413
   Indolfi, C., Avvedimento, E.V., Rapacciuolo, A., DiLorenzo, E., Esposito, G., Stabile, E., Fellicello, A., Mele, E., Giuliano, P., Condorelli, G., and Chiarrelo, M. 1995. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nature Medicine 1:541‐545
   Kim, S., Lin, H., Barr, E., Chu, L., Leiden, J.M., and Parmacek, M.S. 1997. Transcriptional targeting of replication‐defective adenovirus transgene expression to smooth muscle cells in vivo. J. Clin. Invest. 100:1006‐1014
   Lombardi, J.V., Naji, M., Larson, R.A., Ryan, S.V., Naji, A., Koeberlein, B., and Golden, M.A. 2001. Adenoviral mediated uteroglobin gene transfer to the adventitia reduces arterial intimal hyperplasia. J. Surg. Res. 99:377‐380
   Nabel, E.G., Plautz, G., Boyce, F.M., Stanley, J.C., and Nabel, G.J. 1989. Recombinant gene in expression in vivo within endothelial cells of the arterial wall. Science 244:1342‐1344
   Nabel, E.G., Plautz, G., and Nabel, G.J. 1990. Site‐specific gene expression in vivo by direct gene transfer into the arterial wall. Science 249:1285‐1288
   Ohno, T., Gordon, D., San, H., Pompili, V.J., Imperiale, M.J., Nabel, G.J., Nabel, E.G. 1994. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 265:781‐784
   Ribault, S., Neuville, P., Mechine‐Neuville, A., Auge, F., Parlakian, A., Gabbiani, G., Paulin, D., and Calenda, V. 2001. Chimeric smooth muscle‐specific enhancer/promoters: Valuable tools for adenovirus‐mediated cardiovascular gene therapy. Circ. Res. 88:468‐475
   Rios, C.D., Ooboshi, H., Piegors, D., Davidson, B.L., and Heistad, D.D. 1995. Adenovirus‐mediated gene transfer to normal and atherosclerotic arteries: A novel approach. Arterioscler. Thromb. Vasc. Biol. 15:2241‐2245
   Shi, Y., Fard, A., Vermani, P., and Zalewski, A. 1994. Transgene expression vin the coronary circulation transcatheter gene delivery. Gene Therapy 1:408‐414
   Simari, R.D., San, H., Rekhter, M., Ohno, T., Gordon, D., Nabel, G.J., and Nabel, E.G. 1996. Regulation of cellular proliferation and intimal formation following balloon injury in atherosclerotic rabbit arteries. J. Clin. Invest. 98:225‐235
   Singh, R., Pan, S., Mueske, C.S., Witt, T., Kleppe, L.S., Peterson, T.E., Slobodova, A., Chang, J.Y., Caplice, N.M., and Simari, R.D. 2001. Role for tissue factor pathway in murine model of vascular remodeling. Circ. Res. 89:71‐76
   Steg, P.G., Feldman, L.J., Scoazec, J.Y., Tahlil, O., Barry, J.J., Boulechfar, S., Ragot, T., Isner, J.M., and Perricaudet, M. 1994. Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector. Circulation 90:1648‐1656
   Vassalli, G., Agah, R., Qiao, R., Aguilar, C., and Dichek, D.A. 1999. A mouse model of arterial gene transfer: Antigen‐specific immunity is a minor determinant of the early loss of adenovirus‐mediated transgene expression. Circ. Res. 85:e25‐32
   Willard, J.E., Landau, C., Glamann, D.B., Burns, D., Jessen, M.E., Pirwitz, M.J., Gerard, R.D., and Meidell, R.S. 1994. Genetic modification of the vessel wall: Comparison of surgical and catheter‐based techniques for delivery of recombinant adenovirus. Circulation 89:2190‐2197
   Wilson, J.M., Birinyi, L.K., Salomon, P., Callow, A.D., and Mulligan, R.C. 1989. Implantation of vascular grafts lined with genetically modified endothelial cells. Science 244:1344‐1346
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library