Use of Zebrafish Models for the Analysis of Human Disease

Hao Zhu1, Leonard I. Zon2

1 Howard Hughes Medical Institute, Chevy Chase, Maryland, 2 Children's Hospital and Harvard Medical School, Boston, Massachusetts
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 15.3
DOI:  10.1002/0471142905.hg1503s34
Online Posting Date:  November, 2002
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The zebrafish has emerged as a powerful animal model for human diseases. While it has long informed us about the biology of early development, it has recently come into favor for the investigation of clinically relevant problems. Genes conserved from fish to humans can be rapidly analyzed using the zebrafish embryo in what is essentially a transparent in vivo assay. This unit describes methodologies including genetic screening, targeted knockdowns, ectopic overexpression, and transgenesis.

PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Approach
  • Examples of Zebrafish Models of Human Disease
  • A Novel Iron Transporter Found in Zebrafish
  • Concluding Remarks
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Amatruda, J.F. and Zon, L.I. 1999. Dissecting hematopoiesis and disease using the zebrafish. Dev. Biol. 216:1‐15.
   Baker, K., Warren, K.S., Yellen, G., and Fishman, M.C. 1997. Defective “pacemaker” current (Ih) in a zebrafish mutant with a slow heart rate. Proc. Natl. Acad. Sci. U.S.A. 94:4554‐4559.
   Brownlie, A., Donovan, A., Pratt, S.J., Paw, B.H., Oates, A.C., Brugnara, C., Witkowska, H.E., Sassa, S., and Zon, L.I. 1998. Positional cloning of the zebrafish sauternes gene: A model for congenital sideroblastic anaemia. Nature Genet. 20:244‐250.
   Chen, J. N., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., van Eeden, F.J., Furutani‐Seiki, M., Granato, M., Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., Kelsh, R.N., Mullins, M.C., and Nusslein‐Volhard, C. 1996. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123:293‐302.
   Dickmeis, T., Mourrain, P., Saint‐Etienne, L., Fischer, N., Aanstad, P., Clark, M., Strahle, U., and Rosa, F. 2001. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox‐related gene. Genes. Dev. 15:1487‐1492.
   Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S.J., Moynihan, J., Paw, B.H., Drejer, A., Barut, B., Zapata, A., Law, T.C., Brugnara, C., Lux, S.E., Pinkus, G.S., Pinkus, J.L., Kingsley, P.D., Palis, J., Fleming, M.D., Andrews, N.C., and Zon, L.I. 2000. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776‐781.
   Driever, W., Solnica‐Krezel, L., Schier, A.F., Neuhauss, S.C., Malicki, J., Stemple, D.L., Stainier, D.Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., and Boggs, C. 1996. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37‐46.
   Finley, K.R., Davidson, A.E., and Ekker, S.C. 2001. Three‐color imaging using fluorescent proteins in living zebrafish embryos. Biotechniques 31:66‐70, 72.
   Gaiano, N., Amsterdam, A., Kawakami, K., Allende, M., Becker, T., and Hopkins, N. 1996. Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383:829‐832.
   Goldman, D., Hankin, M., Li, Z., Dai, X., and Ding, J. 2001. Transgenic zebrafish for studying nervous system development and regeneration. Transgenic Res. 10:21‐33.
   Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani‐Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., and Nusslein‐Volhard, C. 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1‐36.
   Halloran, M.C., Sato‐Maeda, M., Warren, J.T., Su, F., Lele, Z., Krone, P.H., Kuwada, J.Y., and Shoji, W. 2000. Laser‐induced gene expression in specific cells of transgenic zebrafish. Development 127:1953‐1960.
   Hammerschmidt, M., Blader, P., and Strahle, U. 1999. Strategies to perturb zebrafish development. Methods Cell. Biol 59:87‐115.
   Higashijima, S., Hotta, Y., and Okamoto, H. 2000. Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet‐1 promoter/enhancer. J. Neurosci. 20:206‐218.
   Huang, H., Vogel, S.S., Liu, N., Melton, D.A., and Lin, S. 2001. Analysis of pancreatic development in living transgenic zebrafish embryos. Mol. Cell. Endocrinol. 177:117‐124.
   Ju, B., Xu, Y., He, J., Liao, J., Yan, T., Hew, C.L., Lam, T.J., and Gong, Z. 1999. Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters. Dev. Genet. 25:158‐67.
   Kaplan, J. and Kushner, J.P. 2000. Mining the genome for iron. Nature 403:711,713.
   Kikuchi, Y., Trinh, L.A., Reiter, J.F., Alexander, J., Yelon, D., and Stainier, D.Y. 2000. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev. 14:1279‐1289.
   Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B., and Stainier, D.Y. 2001. Casanova encodes a novel Sox‐related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 15:1493‐1505.
   Küster, R.W. and Fraser, S.E. 2001. Tracing transgene expression in living zebrafish embryos. Dev. Biol. 233:329‐346.
   Long, Q., Meng, A., Wang, H., Jessen, J.R., Farrell, M.J., and Lin, S. 1997. GATA‐1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124:4105‐4111.
   Montosi, G., Paglia, P., Garuti, C., Guzman, C.A., Bastin, J.M., Colombo, M.P., and Pietrangelo, A. 2000. Wild‐type HFE protein normalizes transferrin iron accumulation in macrophages from subjects with hereditary hemochromatosis. Blood 96:1125‐1129.
   Moss, J.B., Price, A.L., Raz, E., Driever, W., and Rosenthal, N. 1996. Green fluorescent protein marks skeletal muscle in murine cell lines and zebrafish. Gene 1731:89‐98.
   Motoike, T., Loughna, S., Perens, E., Roman, B. L., Liao, W., Chau, T.C., Richardson, C.D., Kawate, T., Kuno, J., Weinstein, B.M., Stainier, D.Y., and Sato, T.N. 2000. Universal GFP reporter for the study of vascular development. Genesis 28:75‐81.
   Nasevicius, A. and Ekker, S.C. 2000. Effective targeted gene “knockdown” in zebrafish. Nature Genet 26:216‐220.
   Neuhauss, S.C., Biehlmaier, O., Seeliger, M.W., Das, T., Kohler, K., Harris, W.A., and Baier, H. 1999. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci. 19:8603‐8615.
   Njajou, O.T., Vaessen, N., Joosse, M., Berghuis, B., van Dongen, J.W., Breuning, M.H., Snijders, P.J., Rutten, W.P., Sandkuijl, L.A., Oostra, B.A., van Duijn, C.M., and Heutink, P. 2001. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat. Genet. 28:213‐214.
   Patton, E.E. and Zon, L.I. 2001. The art and design of genetic screens: Zebrafish. Nat. Rev. Genet. 2:956‐966.
   Peterson, R.T., Link, B.A., Dowling, J.E., and Schreiber, S.L. 2000. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. U.S.A. 97:12965‐12969.
   Reiter, J.F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N., and Stainier, D.Y. 1999. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes. Dev. 13:2983‐2995.
   Thompson, M.A., Ransom, D.G., Pratt, S.J., MacLennan, H., Kieran, M.W., Detrich, H.W., 3rd, Vail, B., Huber, T.L., Paw, B., Brownlie, A.J., Oates, A.C., Fritz, A., Gates, M.A., Amores, A., Bahary, N., Talbot, W.S., Her, H., Beier, D.R., Postlethwait, J.H., and Zon, L.I. 1998. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197:248‐269.
   Udvadia, A.J., Koster, R.W., and Skene, J.H. 2001. GAP‐43 promoter elements in transgenic zebrafish reveal a difference in signals for axon growth during CNS development and regeneration. Development 128:1175‐1182.
   Wang, H., Long, Q., Marty, S.D., Sassa, S., and Lin, S. 1998. A zebrafish model for hepatoerythropoietic porphyria. Nat. Genet. 20:239‐243.
   Zoller, H., Koch, R.O., Theurl, I., Obrist, P., Pietrangelo, A., Montosi, G., Haile, D.J., Vogel, W., and Weiss, G. 2001. Expression of the duodenal iron transporters divalent‐metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120:1412‐1419.
Key References
   Development 123:293‐302.
  A volume devoted to describing the mutants collected in the first large‐scale vertebrate genetic screen.
   Donovan, et al., 2000. See above.
  Describes cloning of ferroportin1, a novel conserved iron exporter, from the hypochromic anemia mutant weissherbst.
   Methods. Cell. Biol. 59:87‐115.
  Contains articles describing zebrafish experimental methods and applications towards organ system specific study.
   Nasevicius, et al., 2000. See above.
  A description and analysis of morpholino knockdown technology.
   Patton, et al., 2001. See above.
  The art and design of zebrafish screens.
   Thisse, C. and Zon, L.I. 2002. Organogenesis: Heart and blood formation from the zebrafish point of view. Science 295:457‐462.
  A review of heart and blood organogenesis from the perspective of the zebrafish system.
Internet Resources
  ZFIN (Zebrafish Information Network). General information database for the zebrafish research community.
  Web page for the laboratory of Leonard Zon at Children's Hospital of Boston.
  Zebrafish anatomy guide.
PDF or HTML at Wiley Online Library