Engineering Large Animal Species to Model Human Diseases

Christopher S. Rogers1

1 Exemplar Genetics, Coralville, Iowa
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 15.9
DOI:  10.1002/cphg.18
Online Posting Date:  July, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc.

Keywords: gene editing; gene targeting; human disease; large animal model; somatic cell nuclear transfer

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • GE Large Animal Models
  • Issues to Consider When Developing a GE Large Animal Model
  • The Potential Impact of a GE Large Animal Model
  • Conclusions
  • Acknowledgements
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Al‐Mashhadi, R.H., Sorensen, C.B., Kragh, P.M., Christoffersen, C., Mortensen, M.B., Tolbod, L.P., Thim, T., Du, Y., Li, J., Liu, Y., Moldt, B., Schmidt, M., Vajta, G., Larsen, T., Purup, S., Bolund, L., Nielsen, L.B., Callesen, H., Falk, E., Mikkelsen, J.G., and Bentzon, J.F. 2013. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain‐of‐function mutant. Sci. Transl. Med. 5:166ra161. doi: 10.1126/scitranslmed.3004853.
  Beaton, B.P., Mao, J., Murphy, C.N., Samuel, M.S., Prather, R.S., and Wells, K.D. 2013. Use of single stranded targeting DNA or negative selection does not further increase the efficiency of a GGTA1 promoter trap. J. Mol. Cloning Genet. Recomb. 2:684. doi: 10.4172/2325‐9787.1000101.
  Beraldi, R., Chan, C.H., Rogers, C.S., Kovacs, A.D., Meyerholz, D.K., Trantzas, C., Lambertz, A.M., Darbro, B.W., Weber, K.L., White, K.A., Rheeden, R.V., Kruer, M.C., Dacken, B.A., Wang, X.J., Davis, B.T., Rohret, J.A., Struzynski, J.T., Rohret, F.A., Weimer, J.M., and Pearce, D.A. 2015. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Hum. Mol. Genet. 24:6473‐6484. doi: 10.1093/hmg/ddv356.
  Bi, Y., Liu, X., Zhang, L., Shao, C., Ma, Z., Hua, Z., Zhang, L., Li, L., Hua, W., Xiao, H., Wei, Q., and Zheng, X. 2013. Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol. Biol. 14:20. doi: 10.1186/1471‐2199‐14‐20.
  Bollen, P. and Ellegaard, L. 1997. The Gottingen minipig in pharmacology and toxicology. Pharmacol. Toxicol. 80:3‐4. doi: 10.1111/j.1600‐0773.1997.tb01980.x.
  Brinster, R.L., Chen, H.Y., Trumbauer, M., Senear, A.W., Warren, R., and Palmiter, R.D. 1981. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223‐231. doi: 10.1016/0092‐8674(81)90376‐7.
  Carlson, D.F., Tan, W., Hackett, P.B., and Fahrenkrug, S.C. 2013. Editing livestock genomes with site‐specific nucleases. Reprod. Fertil. Dev. 26:74‐82. doi: 10.1071/RD13260.
  Carlson, D.F., Garbe, J.R., Tan, W., Martin, M.J., Dobrinsky, J.R., Hackett, P.B., Clark, K.J., and Fahrenkrug, S.C. 2011. Strategies for selection marker‐free swine transgenesis using the Sleeping Beauty transposon system. Transgenic Res. 20:1125‐1137. doi: 10.1007/s11248‐010‐9481‐7.
  Chou, C.J., Peng, S.Y., Wu, M.H., Yang, C.C., Lin, Y.S., Cheng, W.T., Wu, S.C., and Lin, Y.P. 2014. Generation and characterization of a transgenic pig carrying a DsRed‐monomer reporter gene. PLoS One 9:e106864. doi: 10.1371/journal.pone.0106864.
  Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J., and Voytas, D.F. 2010. Targeting DNA double‐strand breaks with TAL effector nucleases. Genetics 186:757‐761. doi: 10.1534/genetics.110.120717.
  Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819‐823. doi: 10.1126/science.1231143.
  Cui, C., Song, Y., Liu, J., Ge, H., Li, Q., Huang, H., Hu, L., Zhu, H., Jin, Y., and Zhang, Y. 2015. Gene targeting by TALEN‐induced homologous recombination in goats directs production of beta‐lactoglobulin‐free, high‐human lactoferrin milk. Sci. Rep. 5:10482. doi: 10.1038/srep10482.
  Dai, Y., Vaught, T.D., Boone, J., Chen, S.H., Phelps, C.J., Ball, S., Monahan, J.A., Jobst, P.M., McCreath, K.J., Lamborn, A.E., Cowell‐Lucero, J.L., Wells, K.D., Colman, A., Polejaeva, I.A., and Ayares, D.L. 2002. Targeted disruption of the alpha1,3‐galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20:251‐255. doi: 10.1038/nbt0302‐251.
  Davis, B.T., Wang, X.J., Rohret, J.A., Struzynski, J.T., Merricks, E.P., Bellinger, D.A., Rohret, F.A., Nichols, T.C., and Rogers, C.S. 2014. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLoS One 9:e93457. doi: 10.1371/journal.pone.0093457.
  Denning, C., Burl, S., Ainslie, A., Bracken, J., Dinnyes, A., Fletcher, J., King, T., Ritchie, M., Ritchie, W.A., Rollo, M., de Sousa, P., Travers, A., Wilmut, I., and Clark, A.J. 2001. Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat. Biotechnol. 19:559‐562. doi: 10.1038/89313.
  Du, X., Servin, B., Womack, J.E., Cao, J., Yu, M., Dong, Y., Wang, W., and Zhao, S. 2014. An update of the goat genome assembly using dense radiation hybrid maps allows detailed analysis of evolutionary rearrangements in Bovidae. BMC Genomics 15:625. doi: 10.1186/1471‐2164‐15‐625.
  Elmore, M.R., Dilger, R.N., and Johnson, R.W. 2012. Place and direction learning in a spatial T‐maze task by neonatal piglets. Anim. Cogn. 15:667‐676. doi: 10.1007/s10071‐012‐0495‐9.
  FDA. 2009. Guidance for Industry #187: Regulation of Genetically Engineered Animals Containing Heritable Recombinant DNA Constructs. Available for download at http://www.fda.gov/AnimalVeterinary/DevelopmentApprovalProcess/GeneticEngineering/GeneticallyEngineeredAnimals/default.htm.
  Flisikowska, T., Kind, A., and Schnieke, A. 2014. Genetically modified pigs to model human diseases. J. Appl. Genet. 55:53‐64. doi: 10.1007/s13353‐013‐0182‐9.
  Gieling, E.T., Park, S.Y., Nordquist, R.E., and van der Staay, F.J. 2012. Cognitive performance of low‐ and normal‐birth‐weight piglets in a spatial hole‐board discrimination task. Pediatr. Res. 71:71‐76. doi: 10.1038/pr.2011.5.
  Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A., and Ruddle, F.H. 1980. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. U.S.A. 77:7380‐7384. doi: 10.1073/pnas.77.12.7380.
  Grubb, B.R. and Boucher, R.C. 1999. Pathophysiology of gene‐targeted mouse models for cystic fibrosis. Physiol. Rev. 79:S193‐214.
  Hammer, R.E., Pursel, V.G., Rexroad, C.E., Jr., Wall, R.J., Bolt, D.J., Ebert, K.M., Palmiter, R.D., and Brinster, R.L. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680‐683. doi: 10.1038/315680a0.
  Harms, D.W., Quadros, R.M., Seruggia, D., Ohtsuka, M., Takahashi, G., Montoliu, L., and Gurumurthy, C.B. 2014. Mouse genome editing using the CRISPR/Cas System. Curr. Protoc. Hum. Genet. 83:15.7.1‐15.7.27. doi: 10.1002/0471142905.hg1507s83.
  Hendrie, P.C. and Russell, D.W. 2005. Gene targeting with viral vectors. Mol. Ther. 12:9‐17. doi: 10.1016/j.ymthe.2005.04.006.
  Hickey, R.D., Lillegard, J.B., Fisher, J.E., McKenzie, T.J., Hofherr, S.E., Finegold, M.J., Nyberg, S.L., and Grompe, M. 2011. Efficient production of Fah‐null heterozygote pigs by chimeric adeno‐associated virus‐mediated gene knockout and somatic cell nuclear transfer. Hepatology 54:1351‐1359. doi: 10.1002/hep.24490.
  Hoegger, M.J., Fischer, A.J., McMenimen, J.D., Ostedgaard, L.S., Tucker, A.J., Awadalla, M.A., Moninger, T.O., Michalski, A.S., Hoffman, E.A., Zabner, J., Stoltz, D.A., and Welsh, M.J. 2014. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345:818‐822. doi: 10.1126/science.1255825.
  Ivics, Z., Garrels, W., Mates, L., Yau, T.Y., Bashir, S., Zidek, V., Landa, V., Geurts, A., Pravenec, M., Rulicke, T., Kues, W.A., and Izsvak, Z. 2014. Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat. Protoc. 9:810‐827. doi: 10.1038/nprot.2014.010.
  Jacobsen, J.C., Bawden, C.S., Rudiger, S.R., McLaughlan, C.J., Reid, S.J., Waldvogel, H.J., MacDonald, M.E., Gusella, J.F., Walker, S.K., Kelly, J.M., Webb, G.C., Faull, R.L., Rees, M.I., and Snell, R.G. 2010. An ovine transgenic Huntington's disease model. Hum. Mol. Genet. 19:1873‐1882. doi: 10.1093/hmg/ddq063.
  Jakobsen, J.E., Johansen, M.G., Schmidt, M., Dagnaes‐Hansen, F., Dam, K., Gunnarsson, A., Liu, Y., Kragh, P.M., Li, R., Holm, I.E., Callesen, H., Mikkelsen, J.G., Nielsen, A.L., and Jorgensen, A.L. 2013. Generation of minipigs with targeted transgene insertion by recombinase‐mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res. 22:709‐723. doi: 10.1007/s11248‐012‐9671‐6.
  Jiang, Y., Xie, M., Chen, W., Talbot, R., Maddox, J.F., Faraut, T., Wu, C., Muzny, D.M., Li, Y., Zhang, W., Stanton, J.A., Brauning, R., Barris, W.C., Hourlier, T., Aken, B.L., Searle, S.M., Adelson, D.L., Bian, C., Cam, G.R., Chen, Y., Cheng, S., DeSilva, U., Dixen, K., Dong, Y., Fan, G., Franklin, I.R., Fu, S., Fuentes‐Utrilla, P., Guan, R., Highland, M.A., Holder, M.E., Huang, G., Ingham, A.B., Jhangiani, S.N., Kalra, D., Kovar, C.L., Lee, S.L., Liu, W., Liu, X., Lu, C., Lv, T., Mathew, T., McWilliam, S., Menzies, M., Pan, S., Robelin, D., Servin, B., Townley, D., Wang, W., Wei, B., White, S.N., Yang, X., Ye, C., Yue, Y., Zeng, P., Zhou, Q., Hansen, J.B., Kristiansen, K., Gibbs, R.A., Flicek, P., Warkup, C.C., Jones, H.E., Oddy, V.H., Nicholas, F.W., McEwan, J.C., Kijas, J.W., Wang, J., Worley, K.C., Archibald, A.L., Cockett, N., Xu, X., Wang, W., and Dalrymple, B.P. 2014. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344:1168‐1173. doi: 10.1126/science.1252806.
  Jin, D.I., Lee, S.H., Choi, J.H., Lee, J.S., Lee, J.E., Park, K.W., and Seo, J.S. 2003. Targeting efficiency of a‐1,3‐galactosyl transferase gene in pig fetal fibroblast cells. Exp. Mol. Med. 35:572‐577. doi: 10.1038/emm.2003.75.
  Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. 2012. A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity. Science 337:816‐821. doi: 10.1126/science.1225829.
  Jolly, R.D., Martinus, R.D., and Palmer, D.N. 1992. Sheep and other animals with ceroid‐lipofuscinoses: Their relevance to Batten disease. Am. J. Med. Genet. 42:609‐614. doi: 10.1002/ajmg.1320420436.
  Kaartinen, V. and Nagy, A. 2001. Removal of the floxed neo gene from a conditional knockout allele by the adenoviral Cre recombinase in vivo. Genesis 31:126‐129. doi: 10.1002/gene.10015.
  Karageorgos, L., Lancaster, M.J., Nimmo, J.S., and Hopwood, J.J. 2011. Gaucher disease in sheep. J. Inherit. Metab. Dis. 34:209‐215. doi: 10.1007/s10545‐010‐9230‐3.
  Kim, Y.G., Cha, J., and Chandrasegaran, S. 1996. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U.S.A. 93:1156‐1160. doi: 10.1073/pnas.93.3.1156.
  Klymiuk, N., Bocker, W., Schonitzer, V., Bahr, A., Radic, T., Frohlich, T., Wunsch, A., Kessler, B., Kurome, M., Schilling, E., Herbach, N., Wanke, R., Nagashima, H., Mutschler, W., Arnold, G.J., Schwinzer, R., Schieker, M., and Wolf, E. 2012. First inducible transgene expression in porcine large animal models. FASEB J. 26:1086‐1099. doi: 10.1096/fj.11‐185041.
  Kumar, D., Talluri, T.R., Anand, T., and Kues, W.A. 2015. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J. Stem Cells 7:315‐328. doi: 10.4252/wjsc.v7.i2.315.
  Lai, L. and Prather, R.S. 2003. Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells 5:233‐241. doi: 10.1089/153623003772032754.
  Lai, L., Kolber‐Simonds, D., Park, K.W., Cheong, H.T., Greenstein, J.L., Im, G.S., Samuel, M., Bonk, A., Rieke, A., Day, B.N., Murphy, C.N., Carter, D.B., Hawley, R.J., and Prather, R.S. 2002. Production of alpha‐1,3‐galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089‐1092. doi: 10.1126/science.1068228.
  Li, S., Flisikowska, T., Kurome, M., Zakhartchenko, V., Kessler, B., Saur, D., Kind, A., Wolf, E., Flisikowski, K., and Schnieke, A. 2014a. Dual fluorescent reporter pig for Cre recombination: Transgene placement at the ROSA26 locus. PLoS One 9:e102455. doi: 10.1371/journal.pone.0102455.
  Li, X., Yang, Y., Bu, L., Guo, X., Tang, C., Song, J., Fan, N., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Yi, X., Quan, L., Liu, S., Yang, Z., Ouyang, H., Chen, Y.E., Wang, Z., and Lai, L. 2014b. Rosa26‐targeted swine models for stable gene over‐expression and Cre‐mediated lineage tracing. Cell Res. 24:501‐504. doi: 10.1038/cr.2014.15.
  Luhken, G. 2012. Genetic testing for phenotype‐causing variants in sheep and goats. Mol. Cell. Probes 26:231‐237. doi: 10.1016/j.mcp.2012.04.005.
  Luo, Y., Li, J., Liu, Y., Lin, L., Du, Y., Li, S., Yang, H., Vajta, G., Callesen, H., Bolund, L., and Sorensen, C.B. 2011. High efficiency of BRCA1 knockout using rAAV‐mediated gene targeting: Developing a pig model for breast cancer. Transgenic Res. 20:975‐988. doi: 10.1007/s11248‐010‐9472‐8.
  Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. 2013. RNA‐guided human genome engineering via Cas9. Science 339:823‐826. doi: 10.1126/science.1232033.
  Marshall, M. 1979. Induction of chronic diabetes by streptozotocin in the miniature pig. Res. Exp. Med. 175:187‐196. doi: 10.1007/BF01851826.
  McBride, S.D., Perentos, N., and Morton, A.J. 2015. A mobile, high‐throughput semi‐automated system for testing cognition in large non‐primate animal models of Huntington disease. J. Neurosci. Methods pii:S0165‐0270(15)00316‐7. doi: 10.1016/j.jneumeth.2015.08.025.
  McCreath, K.J., Howcroft, J., Campbell, K.H., Colman, A., Schnieke, A.E., and Kind, A.J. 2000. Production of gene‐targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066‐1069. doi: 10.1038/35016604.
  Moreadith, R.W. and Radford, N.B. 1997. Gene targeting in embryonic stem cells: The new physiology and metabolism. J. Mol. Med. 75:208‐216. doi: 10.1007/s001090050105.
  National Research Council. 2011. Guide for the Care and Use of Laboratory Animals, 8th ed. National Academies Press, Washington, D.C.
  Panepinto, L.M. and Phillips, R.W. 1986. The Yucatan miniature pig: Characterization and utilization in biomedical research. Lab. Anim. Sci. 36:344‐347.
  Park, D.S., Cerrone, M., Morley, G., Vasquez, C., Fowler, S., Liu, N., Bernstein, S.A., Liu, F.Y., Zhang, J., Rogers, C.S., Priori, S.G., Chinitz, L.A., and Fishman, G.I. 2015. Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J. Clin. Invest. 125:403‐412. doi: 10.1172/JCI76919.
  Petters, R.M., Alexander, C.A., Wells, K.D., Collins, E.B., Sommer, J.R., Blanton, M.R., Rojas, G., Hao, Y., Flowers, W.L., Banin, E., Cideciyan, A.V., Jacobson, S.G., and Wong, F. 1997. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat. Biotechnol. 15:965‐970. doi: 10.1038/nbt1097‐965.
  Pezzulo, A.A., Tang, X.X., Hoegger, M.J., Alaiwa, M.H., Ramachandran, S., Moninger, T.O., Karp, P.H., Wohlford‐Lenane, C.L., Haagsman, H.P., van Eijk, M., Banfi, B., Horswill, A.R., Stoltz, D.A., McCray, P.B., Jr., Welsh, M.J., and Zabner, J. 2012. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487:109‐113. doi: 10.1038/nature11130.
  Pham, C.T., MacIvor, D.M., Hug, B.A., Heusel, J.W., and Ley, T.J. 1996. Long‐range disruption of gene expression by a selectable marker cassette. Proc. Natl. Acad. Sci. U.S.A. 93:13090‐13095. doi: 10.1073/pnas.93.23.13090.
  Piedrahita, J.A. 2000. Targeted modification of the domestic animal genome. Theriogenology 53:105‐116. doi: 10.1016/S0093‐691X(99)00244‐7.
  Pinnapureddy, A.R., Stayner, C., McEwan, J., Baddeley, O., Forman, J., and Eccles, M.R. 2015. Large animal models of rare genetic disorders: Sheep as phenotypically relevant models of human genetic disease. Orphanet J. Rare Dis. 10:107. doi: 10.1186/s13023‐015‐0327‐5.
  Prescott, M.F., McBride, C.H., Hasler‐Rapacz, J., Von Linden, J., and Rapacz, J. 1991. Development of complex atherosclerotic lesions in pigs with inherited hyper‐LDL cholesterolemia bearing mutant alleles for apolipoprotein B. Am J Pathol 139:139‐147.
  Rapacz, J., Hasler‐Rapacz, J., Taylor, K.M., Checovich, W.J., and Attie, A.D. 1986. Lipoprotein mutations in pigs are associated with elevated plasma cholesterol and atherosclerosis. Science 234:1573‐1577. doi: 10.1126/science.3787263.
  Redel, B.K. and Prather, R.S. 2015. Meganucleases revolutionize the production of genetically engineered pigs for the study of human diseases. Toxicol. Pathol. 44:428‐33. doi: 10.1177/0192623315613160.
  Richardson, C.D., Ray, G.J., DeWitt, M.A., Curie, G.L., and Corn, J.E. 2016. Enhancing homology‐directed genome editing by catalytically active and inactive CRISPR‐Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34:339‐344. doi: 10.1038/nbt.3481.
  Rogers, C.S. 2016. Genetically engineered livestock for biomedical models. Transgenic Res. [ePub ahead of print].
  Rogers, C.S., Abraham, W.M., Brogden, K.A., Engelhardt, J.F., Fisher, J.T., McCray, P.B., Jr., McLennan, G., Meyerholz, D.K., Namati, E., Ostedgaard, L.S., Prather, R.S., Sabater, J.R., Stoltz, D.A., Zabner, J., and Welsh, M.J. 2008a. The porcine lung as a potential model for cystic fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 295:L240‐263. doi: 10.1152/ajplung.90203.2008.
  Rogers, C.S., Hao, Y., Rokhlina, T., Samuel, M., Stoltz, D.A., Li, Y., Petroff, E., Vermeer, D.W., Kabel, A.C., Yan, Z., Spate, L., Wax, D., Murphy, C.N., Rieke, A., Whitworth, K., Linville, M.L., Korte, S.W., Engelhardt, J.F., Welsh, M.J., and Prather, R.S. 2008b. Production of CFTR‐null and CFTR‐DeltaF508 heterozygous pigs by adeno‐associated virus‐mediated gene targeting and somatic cell nuclear transfer. J. Clin. Invest. 118:1571‐1577. doi: 10.1172/JCI34773.
  Rogers, C.S., Stoltz, D.A., Meyerholz, D.K., Ostedgaard, L.S., Rokhlina, T., Taft, P.J., Rogan, M.P., Pezzulo, A.A., Karp, P.H., Itani, O.A., Kabel, A.C., Wohlford‐Lenane, C.L., Davis, G.J., Hanfland, R.A., Smith, T.L., Samuel, M., Wax, D., Murphy, C.N., Rieke, A., Whitworth, K., Uc, A., Starner, T.D., Brogden, K.A., Shilyansky, J., McCray, P.B., Jr., Zabner, J., Prather, R.S., and Welsh, M.J. 2008c. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837‐1841. doi: 10.1126/science.1163600.
  Ross, J.W., Whyte, J.J., Zhao, J., Samuel, M., Wells, K.D., and Prather, R.S. 2010. Optimization of square‐wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Res. 19:611‐620. doi: 10.1007/s11248‐009‐9345‐1.
  Ruan, J., Li, H., Xu, K., Wu, T., Wei, J., Zhou, R., Liu, Z., Mu, Y., Yang, S., Ouyang, H., Chen‐Tsai, R.Y., and Li, K. 2015. Highly efficient CRISPR/Cas9‐mediated transgene knockin at the H11 locus in pigs. Sci. Rep. 5:14253. doi: 10.1038/srep14253.
  Schmidt, M., Winther, K.D., Secher, J.O., and Callesen, H. 2015. Postmortem findings in cloned and transgenic piglets dead before weaning. Theriogenology 84:1014‐1023. doi: 10.1016/j.theriogenology.2015.05.037.
  Schnieke, A.E., Kind, A.J., Ritchie, W.A., Mycock, K., Scott, A.R., Ritchie, M., Wilmut, I., Colman, A., and Campbell, K.H. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130‐2133. doi: 10.1126/science.278.5346.2130.
  Schook, L.B., Collares, T.V., Darfour‐Oduro, K.A., De, A.K., Rund, L.A., Schachtschneider, K.M., and Seixas, F.K. 2015. Unraveling the swine genome: Implications for human health. Annu. Rev. Anim. Biosci. 3:219‐244. doi: 10.1146/annurev‐animal‐022114‐110815.
  Shah, V.S., Meyerholz, D.K., Tang, X.X., Reznikov, L., Abou Alaiwa, M., Ernst, S.E., Karp, P.H., Wohlford‐Lenane, C.L., Heilmann, K.P., Leidinger, M.R., Allen, P.D., Zabner, J., McCray, P.B., Jr., Ostedgaard, L.S., Stoltz, D.A., Randak, C.O., and Welsh, M.J. 2016. Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351:503‐507. doi: 10.1126/science.aad5589.
  Shen, B., Zhang, J., Wu, H., Wang, J., Ma, K., Li, Z., Zhang, X., Zhang, P., and Huang, X. 2013. Generation of gene‐modified mice via Cas9/RNA‐mediated gene targeting. Cell Res. 23:720‐723. doi: 10.1038/cr.2013.46.
  Sieren, J.C., Meyerholz, D.K., Wang, X.J., Davis, B.T., Newell, J.D., Hammond, E., Rohret, J.A., Rohret, F.A., Struzynski, J.T., Goeken, J.A., Naumann, P.W., Leidinger, M.R., Taghiyev, A., Van Rheeden, R., Hagen, J., Darbro, B.W., Quelle, D.E., and Rogers, C.S. 2014. Development and translational imaging of a TP53 porcine tumorigenesis model. J. Clin. Invest. 124:4052‐4066. doi: 10.1172/JCI75447.
  Soto, D.A. and Ross, P.J. 2016. Pluripotent stem cells and livestock genetic engineering. Transgenic Res. [ePub ahead of print].
  Steele, P.M., Chesebro, J.H., Stanson, A.W., Holmes, D.R., Jr., Dewanjee, M.K., Badimon, L., and Fuster, V. 1985. Balloon angioplasty. Natural history of the pathophysiological response to injury in a pig model. Circ. Res. 57:105‐112. doi: 10.1161/01.RES.57.1.105.
  Stoltz, D.A., Meyerholz, D.K., and Welsh, M.J. 2015. Origins of cystic fibrosis lung disease. N. Engl. J. Med. 372:351‐362. doi: 10.1056/NEJMra1300109.
  Stoltz, D.A., Meyerholz, D.K., Pezzulo, A.A., Ramachandran, S., Rogan, M.P., Davis, G.J., Hanfland, R.A., Wohlford‐Lenane, C., Dohrn, C.L., Bartlett, J.A., Nelson, G.A.t., Chang, E.H., Taft, P.J., Ludwig, P.S., Estin, M., Hornick, E.E., Launspach, J.L., Samuel, M., Rokhlina, T., Karp, P.H., Ostedgaard, L.S., Uc, A., Starner, T.D., Horswill, A.R., Brogden, K.A., Prather, R.S., Richter, S.S., Shilyansky, J., McCray, P.B., Jr., Zabner, J., and Welsh, M.J. 2010. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci. Transl. Med. 2:29ra31. doi: 10.1126/scitranslmed.3000928.
  Sun, X., Yan, Z., Yi, Y., Li, Z., Lei, D., Rogers, C.S., Chen, J., Zhang, Y., Welsh, M.J., Leno, G.H., and Engelhardt, J.F. 2008. Adeno‐associated virus‐targeted disruption of the CFTR gene in cloned ferrets. J. Clin. Invest. 118:1578‐1583. doi: 10.1172/JCI34599.
  Tan, W., Proudfoot, C., Lillico, S.G., and Whitelaw, C.B. 2016. Gene targeting, genome editing: From Dolly to editors. Transgenic Res. [ePub ahead of print].
  Uenishi, H., Morozumi, T., Toki, D., Eguchi‐Ogawa, T., Rund, L.A., and Schook, L.B. 2012. Large‐scale sequencing based on full‐length‐enriched cDNA libraries in pigs: Contribution to annotation of the pig genome draft sequence. BMC Genomics 13:581. doi: 10.1186/1471‐2164‐13‐581.
  Vasquez, K.M., Marburger, K., Intody, Z., and Wilson, J.H. 2001. Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. U.S.A. 98:8403‐8410. doi: 10.1073/pnas.111009698.
  Wang, W.H., Abeydeera, L.R., Prather, R.S., and Day, B.N. 1998. Morphologic comparison of ovulated and in vitro‐matured porcine oocytes, with particular reference to polyspermy after in vitro fertilization. Mol. Reprod. Dev. 49:308‐316. doi: 10.1002/(SICI)1098‐2795(199803)49:3%3c308::AID‐MRD11%3e3.0.CO;2‐S.
  Wang, J., Chang, Y.F., Hamilton, J.I., and Wilkinson, M.F. 2002. Nonsense‐associated altered splicing: A frame‐dependent response distinct from nonsense‐mediated decay. Mol. Cell 10:951‐957. doi: 10.1016/S1097‐2765(02)00635‐4.
  Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. 2013. One‐step generation of mice carrying mutations in multiple genes by CRISPR/Cas‐mediated genome engineering. Cell 153:910‐918. doi: 10.1016/j.cell.2013.04.025.
  Welsh, M.J., Ramsey, B.W., Accurso, F., and Cutting, G.R. 2001. Cystic fibrosis. In The Metabolic and Molecular Basis of Inherited Disease, 8th ed. (C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, B. Childs, and B. Vogelstein, eds.) pp. 5121‐5189. McGraw‐Hill, New York.
  West, F.D., Terlouw, S.L., Kwon, D.J., Mumaw, J.L., Dhara, S.K., Hasneen, K., Dobrinsky, J.R., and Stice, S.L. 2010. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 19:1211‐1220. doi: 10.1089/scd.2009.0458.
  West, F.D., Uhl, E.W., Liu, Y., Stowe, H., Lu, Y., Yu, P., Gallegos‐Cardenas, A., Pratt, S.L., and Stice, S.L. 2011. Brief report: Chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 29:1640‐1643. doi: 10.1002/stem.713.
  Whitelaw, C.B., Radcliffe, P.A., Ritchie, W.A., Carlisle, A., Ellard, F.M., Pena, R.N., Rowe, J., Clark, A.J., King, T.J., and Mitrophanous, K.A. 2004. Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett. 571:233‐236. doi: 10.1016/j.febslet.2004.06.076.
  Whitworth, K.M., Lee, K., Benne, J.A., Beaton, B.P., Spate, L.D., Murphy, S.L., Samuel, M.S., Mao, J., O'Gorman, C., Walters, E.M., Murphy, C.N., Driver, J., Mileham, A., McLaren, D., Wells, K.D., and Prather, R.S. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro‐derived oocytes and embryos. Biol. Reprod. 91:78. doi: 10.1095/biolreprod.114.121723.
  Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810‐813. doi: 10.1038/385810a0.
  Yang, D., Yang, H., Li, W., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Fan, N., Song, J., Tian, J., Li, F., Zhang, J., Chang, L., Pei, D., Chen, Y.E., and Lai, L. 2011. Generation of PPARgamma mono‐allelic knockout pigs via zinc‐finger nucleases and nuclear transfer cloning. Cell Res. 21:979‐982. doi: 10.1038/cr.2011.70.
  Yu, H., Wang, X., Zhu, L., He, Z., Liu, G., Xu, X., Chen, J., and Cheng, G. 2013. Establishment of a rapid and scalable gene expression system in livestock by site‐specific integration. Gene 515:367‐371. doi: 10.1016/j.gene.2012.10.017.
  Zhao, J., Whyte, J., and Prather, R.S. 2010. Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res. 341:13‐21. doi: 10.1007/s00441‐010‐1000‐x.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library