Acylcarnitine Analysis by Tandem Mass Spectrometry

Emily H. Smith1, Dietrich Matern1

1 Mayo Clinic College of Medicine, Rochester, Minnesota
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 17.8
DOI:  10.1002/0471142905.hg1708s64
Online Posting Date:  January, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Carnitine plays an essential role in fatty acid metabolism, as well as modulation of intracellular concentrations of free coenzyme A by esterification of acyl residues. Acylcarnitine analysis of various biological fluids is a sensitive method to detect >20 inborn errors of metabolism that result in abnormal accumulation of acylcarnitine species due to several organic acidemias and most fatty acid β‐oxidation disorders. In addition, acylcarnitine analysis may aid in monitoring treatment of known patients affected with these inborn errors of metabolism. This unit describes protocols that can be used to measure acylcarnitine species of various carbon chain lengths in several biological specimen types including plasma, dried blood and bile spots, and urine, by derivatization to butylesters and flow‐injection electrospray ionization tandem mass spectrometry (ESI‐MS/MS). Curr. Protoc. Hum. Genet. 64:17.8.1‐17.8.20. © 2010 by John Wiley & Sons, Inc.

Keywords: acylcarnitines; carnitine; fatty acid oxidation; inborn errors of metabolism; organic acids; tandem mass spectrometry

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Plasma Acylcarnitine Analysis by ESI‐MS/MS
  • Alternate Protocol 1: Urine Acylcarnitine Analysis by ESI‐MS/MS
  • Alternate Protocol 2: Acylcarnitine Analysis in Dried Blood or Bile Spots by ESI‐MS/MS
  • Support Protocol 1: Preparation of Controls for Acylcarnitine Analysis in All Specimen Types
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Plasma Acylcarnitine Analysis by ESI‐MS/MS

  Materials
  • Labeled and unlabeled internal standards (see protocol 4)
  • 98% to 100% formic acid
  • Normal control plasma in 1.5‐ml microcentrifuge tubes (see protocol 4)
  • Abnormal control plasma in 1.5‐ml microcentrifuge tubes (see protocol 4)
  • Patient samples: plasma in tube containing anticoagulant (e.g., heparin)
  • Quality control standard mixture (see protocol 4)
  • Nitrogen gas, in‐house, scrubbed with Big Hydrocarbon Trap BHT‐1 (Chrom Tech)
  • 3 N HCl in n‐butanol (butanolic‐HCl; Regis Chemical, cat. no. 201009)
  • 80% acetonitrile in water
  • 1‐ml screw‐cap micro vials (Chrom Tech)
  • Thermolyne MaxiMix 2 type 37600 vortex mixer
  • Centrifuge (Abbott, cat. no. 3531)
  • Reacti‐Vials (Chrom Tech, cat. no. 402001)
  • Pierce Reacti‐Vap evaporating unit
  • Pierce Reacti‐Therm heating module
  • Autosampler vials (Fisher, cat. no. 0334064)
  • Autosampler caps (Fisher, cat. no. 0337749)
  • Tandem mass spectrometry system (Applied Biosystems/MDS SCIEX API 3000)
  • PE Series 200 LC autosampler
  • MS/MS TurboIon spray source
  • PE Series 200 isocratic LC pump
  • 0.5‐µm filters (Chrom Tech, model no. A‐431)
  • 0.5‐µm Peek filter‐end fitting (Chrom Tech, model no. A‐428X)
  • Back pressure LC column (BDS Hypersil C18, 3‐µm, 50 × 1–cm; Keystone Scientific, cat. no. 053‐46‐1)

Alternate Protocol 1: Urine Acylcarnitine Analysis by ESI‐MS/MS

  • Normal control (see protocol 4)
  • Abnormal control (see protocol 4)
  • Quality control standard mixture (see protocol 4)
  • Blood or bile sample
  • Internal standard/extraction solution prepared in methanol
  • Filter paper (Whatman 903 Protein Saver Card)
  • Automatic puncher (e.g., Wallac DBS Puncher, Perkin‐Elmer Life and Analytical Sciences) or manual punchers (e.g., M.C. Mieth Manufacturing)
  • Plate rotator

Alternate Protocol 2: Acylcarnitine Analysis in Dried Blood or Bile Spots by ESI‐MS/MS

  Materials
  • Normal range pooled plasma, urine, blood, or bite
  • Unlabeled stock standards for controls dissolved in methanol (final working standard solution is prepared in acetonitrile—for plasma or urine acylcarnitine analysis—or methanol—for blood or bile on filter paper—at concentrations based on the upper limit of the reference range for the respective acylcarnitine species)
    • Acetylcarnitine (C 2)
    • Propionylcarnitine (C 3)
    • Butyrylcarnitine (C 4)
    • Isovalerylcarnitine (C 5)
    • Hexanoylcarnitine (C 6)
    • Octanoylcarnitine (C 8)
    • Decanoylcarnitine (C 10)
    • Dodecanoylcarnitine (C 12)
    • Tetradecanoylcarnitine (C 14)
    • Hexadecanoylcarnitine (C 16)
    • Octadecanoylcarnitine (C 18)
  • Isotopically labeled stock standards (internal standards) dissolved in methanol (final working internal standard solution is prepared in acetonitrile—for plasma or urine acylcarnitine analysis—or methanol—for blood or bile on filter paper—at the following concentrations:
    • 1.330 µmol/liter acetyl‐D 3‐carnitine (C 2)
    • 0.266 µmol/liter propionyl‐D 3‐carnitine (C 3)
    • 0.266 µmol/liter butyryl‐D 3‐carnitine (C 4)
    • 0.266 µmol/liter octanoyl‐D 3‐carnitine (C 8)
    • 0.266 µmol/liter dodecanoyl‐D 3‐carnitine (C 12)
    • 0.543 µmol/liter palmitoyl‐D 3‐carnitine (C 16)
  • 2‐ml screw‐cap vials
  • Additional or different internal standards can be used. Labeled and unlabeled acylcarnitine standards are available from several sources, including Dr. Herman J. ten Brink, VU University Medical Center, Amsterdam, The Netherlands (http://www.vumc.nl/metabool/index.html) or Cambridge Isotope Laboratories, (http://www.isotope.com).
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Abdenur, J.E., Chamoles, N.A., Guinle, A.E., Schenone, A.B., and Fuertes, A.N. 1998. Diagnosis of isovaleric acidaemia by tandem mass spectrometry: False positive result due to pivaloylcarnitine in a newborn screening programme. J. Inherit. Metab. Dis. 21:624‐630.
   American College of Medical Genetics. 2008. Standards and Guidelines for Clinical Genetics Laboratories. (http://www.acmg.net; last accessed 12/7/2009)
   Arnold, G.L., Koeberl, D.D., Matern, D., Barshop, B., Braverman, N., Burton, B., Cederbaum, S., Fiegenbaum, A., Garganta, C., Gibson, J., Goodman, S.I., Harding, C., Kahler, S., Kronn, D., and Longo, N. 2008. A Delphi‐based consensus clinical practice protocol for the diagnosis and management of 3‐methylcrotonyl CoA carboxylase deficiency. Mol. Genet. Metab. 93:363‐370.
   Bennett, M.J., Russell, L.K., Tokunaga, C., Narayan, S.B., Tan, L., Seegmiller, A., Boriack, R.L., and Strauss, A.W. 2006. Reye‐like syndrome resulting from novel missense mutations in mitochondrial medium‐ and short‐chain 1‐3‐hydroxy‐acyl‐CoA dehydrogenase. Mol. Genet. Metab. 91:205‐206.
   Berry, G., Goodman, S.I., Marsden, D., Matern, D., and Nyhan, W. 2007. Newborn Screening ACT Sheets and Confirmatory Algorithms. American College of Medical Genetics. (http://www.acmg.net; last accessed 12/7/2009)
   Boneh, A., Andresen, B.S., Gregersen, N., Ibrahim, M., Tzanakos, N., Peters, H., Yaplito‐Lee, J., and Pitt, J.J. 2006. VLCAD deficiency: Pitfalls in newborn screening and confirmation of diagnosis by mutation analysis. Mol. Genet. Metab. 88:166‐170.
   Bremer, J. 1983. Carnitine—Metabolism and functions. Physiol. Rev. 63:1420‐1480.
   Browning, M.F., Larson, C., Strauss, A., and Marsden, D.L. 2005. Normal acylcarnitine levels during confirmation of abnormal newborn screening in long‐chain fatty acid oxidation defects. J. Inherit. Metab. Dis. 28:545‐550.
   Campbell, C.D., Ganesh, J., and Ficicioglu, C. 2005. Two newborns with nutritional vitamin B12 deficiency: Challenges in newborn screening for vitamin B12 deficiency. Haematologica 90:ECR45.
   Carrozzo, R., Dionisi‐Vici, C., Steuerwald, U., Lucioli, S., Deodato, F., Di Giandomenico, S., Bertini, E., Franke, B., Kluijtmans, L.A., Meschini, M.C., Rizzo, C., Piemonte, F., Rodenburg, R., Santer, R., Santorelli, F.M., van Rooij, A., Vermunt‐de Koning, D., Morava, E., and Wevers, R.A. 2007. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh‐like encephalomyopathy, dystonia and deafness. Brain 130:862‐874.
   Cavedon, C.T., Bourdoux, P., Mertens, K., Van Thi, H.V., Herremans, N., de Laet, C., and Goyens, P. 2005. Age‐related variations in acylcarnitine and free carnitine concentrations measured by tandem mass spectrometry. Clin. Chem. 51:745‐752.
   Chace, D.H. 2001. Mass spectrometry in the clinical laboratory. Chem. Rev. 101:445‐477.
   Chalmers, R.A., Roe, C.R., Stacey, T.E., and Hoppel, C.L. 1984. Urinary excretion of L‐carnitine and acylcarnitines by patients with disorders of organic acid metabolism: Evidence for secondary insufficiency of L‐carnitine. Pediatr. Res. 18:1325‐1328.
   Ensenauer, R., Vockley, J., Willard, J.M., Huey, J.C., Sass, J.O., Edland, S.D., Burton, B.K., Berry, S.A., Santer, R., Grunert, S., Koch, H.G., Marquardt, I., Rinaldo, P., Hahn, S., and Matern, D. 2004. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am. J. Hum. Genet. 75:1136‐1142.
   Fingerhut, R., Roschinger, W., Muntau, A.C., Dame, T., Kreischer, J., Arnecke, R., Superti‐Furga, A., Troxler, H., Liebl, B., Olgemoller, B., and Roscher, A.A. 2001. Hepatic carnitine palmitoyltransferase I deficiency: Acylcarnitine profiles in blood spots are highly specific. Clin. Chem. 47:1763‐1768.
   Fingerhut, R., Ensenauer, R., Roschinger, W., Arnecke, R., Olgemoller, B., and Roscher, A.A. 2009. Stability of acylcarnitines and free carnitine in dried blood samples: Implications for retrospective diagnosis of inborn errors of metabolism and neonatal screening for carnitine transporter deficiency. Anal. Chem. 81:3571‐3575.
   Ghoshal, A.K., Guo, T., Soukhova, N., and Soldin, S.J. 2005. Rapid measurement of plasma acylcarnitines by liquid chromatography‐tandem mass spectrometry without derivatization. Clin. Chim. Acta 358:104‐112.
   Gibson, K.M., Bennett, M.J., Naylor, E.W., and Morton, D.H. 1998. 3‐methylcrotonyl‐coenzyme a carboxylase deficiency in amish/mennonite adults identified by detection of increased acylcarnitines in blood spots of their children. J. Pediatr. 132:519‐523.
   Hannon, W.H., Whitley, R.J., Davin, B., Fernhoff, P., Halonen, T., Lavochkin, M., Miller, J., Ojodu, J., and Therrell, B.L. Jr. 2007. Blood Collection on Filter Paper for Newborn Screening Programs; Approved Standard—Fifth Edition. Clinical and Laboratory Standards Institute, Wayne, Pa.
   Heinig, K. and Henion, J. 1999. Determination of carnitine and acylcarnitines in biological samples by capillary electrophoresis‐mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 735:171‐188.
   Hintz, S.R., Matern, D., Strauss, A., Bennett, M.J., Hoyme, H.E., Schelley, S., Kobori, J., Colby, C., Lehman, N.L., and Enns, G.M. 2002. Early neonatal diagnosis of long‐chain 3‐hydroxyacyl coenzyme a dehydrogenase and mitochondrial trifunctional protein deficiencies. Mol. Genet. Metab. 75:120‐127.
   Johnson, D.W. 1999. Inaccurate measurement of free carnitine by the electrospray tandem mass spectrometry screening method for blood spots. J. Inherit. Metab. Dis. 22:201‐202.
   Koeberl, D.D., Young, S.P., Gregersen, N.S., Vockley, J., Smith, W.E., Benjamin, D.K. Jr., An, Y., Weavil, S.D., Chaing, S.H., Bali, D., McDonald, M.T., Kishnani, P.S., Chen, Y.T., and Millington, D.S. 2003. Rare disorders of metabolism with elevated butyryl‐ and isobutyryl‐carnitine detected by tandem mass spectrometry newborn screening. Pediatr. Res. 54:219‐223.
   Loupatty, F.J., Clayton, P.T., Ruiter, J.P.N., Ofman, R., IJlst, L., Brown, G.K., Thorburn, D.R., Harris, R.A., Duran, M., DeSousa, C., Krywawych, S., Heales, S.J.R., and Wanders, R.J.A. 2007. Mutations in the gene encoding 3‐hydroxyisobutyryl‐CoA hydrolase results in progressive infantile neurodegeneration. Am. J. Hum. Genet. 80:195‐199.
   Malvagia, S., La Marca, G., Casetta, B., Gasperini, S., Pasquini, E., Donati, M.A., and Zammarchi, E. 2006. Falsely elevated C4‐carnitine as expression of glutamate formiminotransferase deficiency in tandem mass spectrometry newborn screening. J. Mass Spectrom. 41:263‐265.
   Marble, M., Copeland, S., Khanfar, N., and Rosenblatt, D.S. 2008. Neonatal vitamin B12 deficiency secondary to maternal subclinical pernicious anemia: Identification by expanded newborn screening. J. Pediatr. 152:731‐733.
   Matern, D. 2008. Acylcarnitines, including in vitro loading tests. In Laboratory Guide to the Methods in Biochemical Genetics (N. Blau, M. Duran, and K.M. Gibson, eds.) pp. 171‐206. Springer Verlag, Heidelberg, Germany.
   Matern, D., Strauss, A.W., Hillman, S.L., Mayatepek, E., Millington, D.S., and Trefz, F.K. 1999. Diagnosis of mitochondrial trifunctional protein deficiency in a blood spot from the newborn screening card by tandem mass spectrometry and DNA analysis. Pediatr. Res. 46:45‐49.
   Matern, D., He, M., Berry, S.A., Rinaldo, P., Whitley, C.B., Madsen, P.P., Van Calcar, S.C., Lussky, R.C., Andresen, B.S., Wolff, J.A., and Vockley, J. 2003. Prospective diagnosis of 2‐methylbutyryl‐CoA dehydrogenase deficiency in the Hmong population by newborn screening using tandem mass spectrometry. Pediatrics 112:74‐78.
   Millington, D.S., Roe, C.R., and Maltby, D.A. 1984. Application of high resolution fast atom bombardment and constant B/E ratio linked scanning to the identification and analysis of acylcarnitines in metabolic disease. Biomed. Mass Spectrom. 11:236‐241.
   Millington, D.S., Norwood, D.L., Kodo, N., Roe, C.R., and Inoue, F. 1989. Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography/mass spectrometry to the analysis of acylcarnitines in human urine, blood, and tissue. Anal. Biochem. 180:331‐339.
   Millington, D.S., Terada, N., Chace, D.H., Chen, Y.T., Ding, J.H., Kodo, N., and Roe, C.R. 1992. The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Prog. Clin. Biol. Res. 375:339‐354.
   Morel, C.F., Watkins, D., Scott, P., Rinaldo, P., and Rosenblatt, D.S. 2005. Prenatal diagnosis for methylmalonic acidemia and inborn errors of vitamin B12 metabolism and transport. Mol. Genet. Metab. 86:160‐171.
   Oglesbee, D., He, M., Majumder, N., Vockley, J., Ahmad, A., Angle, B., Burton, B., Charrow, J., Ensenauer, R., Ficicioglu, C.H., Keppen, L.D., Marsden, D., Tortorelli, S., Hahn, S.H., and Matern, D. 2007. Development of a newborn screening follow‐up algorithm for the diagnosis of isobutyryl‐CoA dehydrogenase deficiency. Genet. Med. 9:108‐116.
   Pitt, J.J., Eggington, M., and Kahler, S.G. 2002. Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin. Chem. 48:1970‐1980.
   Rashed, M.S., Ozand, P.T., Bennett, M.J., Barnard, J.J., Govindaraju, D.R., and Rinaldo, P. 1995. Inborn errors of metabolism diagnosed in sudden death cases by acylcarnitine analysis of postmortem bile. Clin. Chem. 41:1109‐1114.
   Rinaldo, P., Studinski, A.L., and Matern, D. 2001. Prenatal diagnosis of disorders of fatty acid transport and mitochondrial oxidation. Prenat. Diagn. 21:52‐54.
   Rinaldo, P., Hahn, S.H., and Matern, D. 2005. Inborn errors of amino acid, organic acid, and fatty acid metabolism. In Tietz Textbook of Clinical Chemistry (E.R. Ashwood, D.E. Bruns, and C.A. Burtis, eds.) pp. 2207‐2247. W.B. Saunders Co., Philadelphia, PA.
   Rinaldo, P., Cowan, T.M., and Matern, D. 2008. Acylcarnitine profile analysis. Genet. Med. 10:151‐156.
   Roe, C.R., Sweetman, L., Roe, D.S., David, F., and Brunengraber, H. 2002. Treatment of cardiomyopathy and rhabdomyolysis in long‐chain fat oxidation disorders using an anaplerotic odd‐chain triglyceride. J. Clin. Invest. 110:259‐269.
   Schmidt‐Sommerfeld, E., Penn, D., Duran, M., Rinaldo, P., Bennett, M.J., Santer, R., and Stanley, C.A. 1992. Detection and quantitation of acylcarnitines in plasma and blood spots from patients with inborn errors of fatty acid oxidation. Prog. Clin. Biol. Res. 375:355‐362.
   Schulze‐Bergkamen, A., Okun, J.G., Spiekerkotter, U., Linder, M., Haas, D., Kohlmuller, D., Mayatepek, E., Schulze‐Bergkamen, H., Greenberg, C.R., Zschocke, J., Hoffmann, G.F., and Kolker, S. 2005. Quantitative acylcarnitine profiling in peripheral blood mononuclear cells using in vitro loading with palmitic and 2‐oxoadipic acids: Biochemical confirmation of fatty acid oxidation and organic acid disorders. Pediatr. Res. 58:873‐880
   Tortorelli, S., Hahn, S.H., Cowan, T.M., Brewster, T.G., Rinaldo, P., and Matern, D. 2005. The urinary excretion of glutarylcarnitine is an informative tool in the biochemical diagnosis of glutaric acidemia type I. Mol. Genet. Metab. 84:137‐143.
   Van Hove, J.L., Kahler, S.G., Feezor, M.D., Ramakrishna, J.P., Hart, P., Treem, W.R., Shen, J.J., Matern, D., and Millington, D.S. 2000. Acylcarnitines in plasma and blood spots of patients with long‐chain 3‐hydroxyacyl‐coenzyme A dehydrogenase deficiency. J. Inherit. Metab. Dis. 23:571‐582.
   Vaz, F.M. and Wanders, R.J. 2002. Carnitine biosynthesis in mammals. Biochem. J. 361:417‐429.
   Vianey‐Saban, C., Boyer, S., Levrat, V., Cheillan, D., Piraud, M., Guffon, N., and Maire, I. 2004. Interference of cefotaxime in plasma acylcarnitine profile mimicking an increase of 3‐hydroxypalmitoleylcarnitine (C16:1‐OH) using butyl esters. J. Inherit. Metab. Dis. 27:94.
   Waddell, L., Wiley, V., Carpenter, K., Bennetts, B., Angel, L., Andresen, B.S., and Wilcken, B. 2006. Medium‐chain acyl‐CoA dehydrogenase deficiency: Genotype‐biochemical phenotype correlations. Mol. Genet. Metab. 87:32‐39.
   Wolfe, L.A., Finegold, D.N., Vockley, J., Walters, N., Chambaz, C., Suormala, T., Koch, H.G., Matern, D., Barshop, B.A., Cropcho, L.J., Baumgartner, M.R., and Gibson, K.M. 2007. Potential misdiagnosis of 3‐methylcrotonyl‐coenzyme A carboxylase deficiency associated with absent or trace urinary 3‐methylcrotonylglycine. Pediatrics 120:e1335‐e1340.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library