Analysis of Epigenetic Modifications of DNA in Human Cells

Lasse Sommer Kristensen1, Marianne Bach Treppendahl1, Kirsten Grønbæk1

1 Department of Hematology, Rigshospitalet, Copenhagen, Denmark
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 20.2
DOI:  10.1002/0471142905.hg2002s77
Online Posting Date:  April, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found in human cells, which are deeply implicated in normal cellular processes as well as in several major human diseases. Here, a range of different methods for the analyses of DNA methylation and hydroxymethylation at locus‐specific and genome‐wide scales is described. Curr. Protoc. Hum. Genet. 77:20.2.1‐20.2.22. © 2013 by John Wiley & Sons, Inc.

Keywords: epigenetics; DNA methylation; DNA hydroxymethylation; methylation‐specific PCR; methylation‐independent PCR; genome‐wide methylation analysis

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Summary
  • Acknowledgments
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Akey, D.T., Akey, J.M., Zhang, K., and Jin, L. 2002. Assaying DNA methylation based on high‐throughput melting curve approaches. Genomics 80:376‐384.
   Armstrong, L. 2012. Epigenetic control of embryonic stem cell differentiation. Stem Cell Rev. 8:67‐77.
   Baylin, S.B. and Jones, P.A. 2011. A decade of exploring the cancer epigenome—Biological and translational implications. Nat. Rev. Cancer 11:726‐734.
   Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6‐21.
   Booth, M.J., Branco, M.R., Ficz, G., Oxley, D., Krueger, F., Reik, W., and Balasubramanian, S. 2012. Quantitative sequencing of 5‐methylcytosine and 5‐hydroxymethylcytosine at single‐base resolution. Science 336:934‐937.
   Candiloro, I.L. and Dobrovic, A. 2009. Detection of MGMT promoter methylation in normal individuals is strongly associated with the T allele of the rs16906252 MGMT promoter single nucleotide polymorphism. Cancer Prev. Res. 2:862‐867.
   Chang, S.C., Tucker, T., Thorogood, N.P., and Brown, C.J. 2006. Mechanisms of X‐chromosome inactivation. Front. Biosci. 11:852‐866.
   Chen, H., Taylor, N.P., Sotamaa, K.M., Mutch, D.G., Powell, M.A., Schmidt, A.P., Feng, S., Hampel, H.L., de la Chapelle, A., and Goodfellow, P.J. 2007. Evidence for heritable predisposition to epigenetic silencing of MLH1. Int. J. Cancer 120:1684‐1688.
   Chu, D.C., Chuang, C.K., Fu, J.B., Huang, H.S., Tseng, C.P., and Sun, C.F. 2002. The use of real‐time quantitative polymerase chain reaction to detect hypermethylation of the CpG islands in the promoter region flanking the GSTP1 gene to diagnose prostate carcinoma. J. Urol. 167:1854‐1858.
   Clark, S.J., Harrison, J., Paul, C.L., and Frommer, M. 1994. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22:2990‐2997.
   Clarke, J., Wu, H.C., Jayasinghe, L., Patel, A., Reid, S., and Bayley, H. 2009. Continuous base identification for single‐molecule nanopore DNA sequencing. Nat. Nanotechnol. 4:265‐270.
   Cottrell, S.E., Distler, J., Goodman, N.S., Mooney, S.H., Kluth, A., Olek, A., Schwope, I., Tetzner, R., Ziebarth, H., and Berlin, K. 2004. A real‐time PCR assay for DNA‐methylation using methylation‐specific blockers. Nucleic Acids Res. 32:e10.
   Davis, T. and Vaisvila, R. 2011. High sensitivity 5‐hydroxymethylcytosine detection in Balb/C brain tissue. J. Vis. Exp. 48:2661.
   Dobrovic, A. and Kristensen, L.S. 2009. DNA methylation, epimutations and cancer predisposition. Int. J. Biochem. Cell Biol. 41:34‐39.
   Doi, A., Park, I.H., Wen, B., Murakami, P., Aryee, M.J., Irizarry, R., Herb, B., Ladd‐Acosta, C., Rho, J., Loewer, S., Miller, J., Schlaeger, T., Daley, G.Q., and Feinberg, A.P. 2009. Differential methylation of tissue‐ and cancer‐specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41:1350‐1353.
   Dupont, J.M., Tost, J., Jammes, H., and Gut, I.G. 2004. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal. Biochem. 333:119‐127.
   Eads, C.A., Danenberg, K.D., Kawakami, K., Saltz, L.B., Blake, C., Shibata, D., Danenberg, P.V., and Laird, P.W. 2000. MethyLight: A high‐throughput assay to measure DNA methylation. Nucleic Acids Res. 28:E32.
   Ehrlich, M. 2009. DNA hypomethylation in cancer cells. Epigenomics 1:239‐259.
   Ehrich, M., Nelson, M.R., Stanssens, P., Zabeau, M., Liloglou, T., Xinarianos, G., Cantor, C.R., Field, J.K., and van den Boom, D. 2005. Quantitative high‐throughput analysis of DNA methylation patterns by base‐specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 102:15785‐15790.
   Esteller, M. 2008. Epigenetics in cancer. N. Eng. J. Med. 358:1148‐1159.
   Fenaux, P., Mufti, G.J., Hellstrom‐Lindberg, E., Santini, V., Finelli, C., Giagounidis, A., Schoch, R., Gattermann, N., Sanz, G., List, A., Gore, S.D., Seymour, J.F., Bennett, J.M., Byrd, J., Backstrom, J., Zimmerman, L., McKenzie, D., Beach, C., and Silverman, L.R. 2009. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher‐risk myelodysplastic syndromes: A randomised, open‐label, phase III study. Lancet Oncol. 10:223‐232.
   Feng, J. and Fan, G. 2009. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int. Rev. Neurobiol. 89:67‐84.
   Flusberg, B.A., Webster, D.R., Lee, J.H., Travers, K.J., Olivares, E.C., Clark, T.A., Korlach, J., and Turner, S.W. 2010. Direct detection of DNA methylation during single‐molecule, real‐time sequencing. NAT. Methods 7:461.
   Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., and Paul, C.L. 1992. A genomic sequencing protocol that yields a positive display of 5‐methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U.S.A. 89:1827‐1831.
   Gardiner‐Garden, M. and Frommer, M. 1987. CpG islands in vertebrate genomes. J. Mol. Biol. 196:261‐282.
   Gonzalgo, M.L. and Jones, P.A. 1997. Rapid quantitation of methylation differences at specific sites using methylation‐sensitive single nucleotide primer extension (Ms‐SNuPE). Nucleic Acids Res. 25:2529‐2531.
   Gonzalgo, M.L. and Liang, G. 2007. Methylation‐sensitive single‐nucleotide primer extension (Ms‐SNuPE) for quantitative measurement of DNA methylation. Nat. Protoc. 2:1931‐1936.
   Grønbæk, K., Muller‐Tidow, C., Perini, G., Lehmann, S., Bach Treppendahl, M., Mills, K., Plass, C., and Schlegelberger, B. 2012. A critical appraisal of tools available for monitoring epigenetic changes in clinical samples from patients with myeloid malignancies. Haematologica 97:1380‐1388.
   Gu, H., Bock, C., Mikkelsen, T.S., Jager, N., Smith, Z.D., Tomazou, E., Gnirke, A., Lander, E.S., and Meissner, A. 2010. Genome‐scale DNA methylation mapping of clinical samples at single‐nucleotide resolution. Nat. Methods 7:133‐136.
   Guldberg, P., Worm, J., and Grønbæk, K. 2002. Profiling DNA methylation by melting analysis. Methods 27:121‐127.
   Gustafson, K.S. 2008. Locked nucleic acids can enhance the analytical performance of quantitative methylation‐specific polymerase chain reaction. J. Mol. Diagn. 10:33‐42.
   Han, H., Cortez, C.C., Yang, X., Nichols, P.W., Jones, P.A., and Liang, G. 2011. DNA methylation directly silences genes with non‐CpG island promoters and establishes a nucleosome occupied promoter. Hum. Mol. Genet. 20:4299‐4310.
   Hawkins, N.J., Lee, J.H., Wong, J.J., Kwok, C.T., Ward, R.L., and Hitchins, M.P. 2009. MGMT methylation is associated primarily with the germline C>T SNP (rs16906252) in colorectal cancer and normal colonic mucosa. Mod. Pathol. 22:1588‐1599.
   He, Y.F., Li, B.Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., Sun, Y., Li, X., Dai, Q., Song, C.X., Zhang, K., He, C., and Xu, G.L. 2011. Tet‐mediated formation of 5‐carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303‐1307.
   Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D., and Baylin, S.B. 1996. Methylation‐specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. U.S.A. 93:9821‐9826.
   Hitchins, M.P., Rapkins, R.W., Kwok, C.T., Srivastava, S., Wong, J.J., Khachigian, L.M., Polly, P., Goldblatt, J., and Ward, R.L. 2011. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer‐affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell 20:200‐213.
   Hodges, E., Smith, A.D., Kendall, J., Xuan, Z., Ravi, K., Rooks, M., Zhang, M.Q., Ye, K., Bhattacharjee, A., Brizuela, L., McCombie, W.R., Wigler, M., Hannon, G.J., and Hicks, J.B. 2009. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res. 19:1593‐1605.
   Huang, Y., Pastor, W.A., Shen, Y., Tahiliani, M., Liu, D.R., and Rao, A. 2010. The behaviour of 5‐hydroxymethylcytosine in bisulfite sequencing. PloS One 5:e8888.
   Huang, Y., Pastor, W.A., Zepeda‐Martinez, J.A., and Rao, A. 2012. The anti‐CMS technique for genome‐wide mapping of 5‐hydroxymethylcytosine. Nat. Protoc. 7:1897‐1908.
   Irizarry, R.A., Ladd‐Acosta, C., Carvalho, B., Wu, H., Brandenburg, S.A., Jeddeloh, J.A., Wen, B., and Feinberg, A.P. 2008. Comprehensive high‐throughput arrays for relative methylation (CHARM). Genome Res. 18:780‐790.
   Jakovcevski, M. and Akbarian, S. 2012. Epigenetic mechanisms in neurological disease. Nat. Med. 18:1194‐1204.
   Javierre, B.M., Hernando, H., and Ballestar, E. 2011. Environmental triggers and epigenetic deregulation in autoimmune disease. Discov. Med. 12:535‐545.
   Jiang, Y., Dunbar, A., Gondek, L.P., Mohan, S., Rataul, M., O'Keefe, C., Sekeres, M., Saunthararajah, Y., and Maciejewski, J.P. 2009. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 113:1315‐1325.
   Kabesch, M., Michel, S., and Tost, J. 2010. Epigenetic mechanisms and the relationship to childhood asthma. Eur. Respir. J. 36:950‐961.
   Kaminsky, Z.A., Assadzadeh, A., Flanagan, J., and Petronis, A. 2005. Single nucleotide extension technology for quantitative site‐specific evaluation of metC/C in GC‐rich regions. Nucleic Acids Res. 33:e95.
   Kaneda, M. 2011. Genomic imprinting in mammals‐epigenetic parental memories. Differentiation 82:51‐56.
   Khulan, B., Thompson, R.F., Ye, K., Fazzari, M.J., Suzuki, M., Stasiek, E., Figueroa, M.E., Glass, J.L., Chen, Q., Montagna, C., Hatchwell, E., Selzer, R.R., Richmond, T.A., Green, R.D., Melnick, A., and Greally, J.M. 2006. Comparative isoschizomer profiling of cytosine methylation: The HELP assay. Genome Res. 16:1046‐1055.
   Kriaucionis, S. and Heintz, N. 2009. The nuclear DNA base 5‐hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929‐930.
   Kristensen, L.S. and Hansen, L.L. 2009. PCR‐based methods for detecting single‐locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin. Chem. 55:1471‐1483.
   Kristensen, L.S., Mikeska, T., Krypuy, M., and Dobrovic, A. 2008. Sensitive Melting Analysis after Real Time‐ Methylation Specific PCR (SMART‐MSP): High‐throughput and probe‐free quantitative DNA methylation detection. Nucleic Acids Res. 36:e42.
   Kristensen, L.S., Nielsen, H.M., and Hansen, L.L. 2009. Epigenetics and cancer treatment. Eur. J. Pharmacol. 625:131‐142.
   Kristensen, L.S., Nielsen, H.M., Hager, H., and Hansen, L.L. 2011. Methylation of MGMT in malignant pleural mesothelioma occurs in a subset of patients and is associated with the T allele of the rs16906252 MGMT promoter SNP. Lung Cancer 71:130‐136.
   Kristensen, L.S., Raynor, M.P., Candiloro, I., and Dobrovic, A. 2012. Methylation profiling of normal individuals reveals mosaic promoter methylation of cancer‐associated genes. Oncotarget 3:450‐461.
   Kuppuswamy, M.N., Hoffmann, J.W., Kasper, C.K., Spitzer, S.G., Groce, S.L., and Bajaj, S.P. 1991. Single nucleotide primer extension to detect genetic diseases: Experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc. Natl. Acad. Sci. U.S.A. 88:1143‐1147.
   Kwok, J.B. 2010. Role of epigenetics in Alzheimer's and Parkinson's disease. Epigenomics 2:671‐682.
   Laird, P.W. 2010. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 11:191‐203.
   Ligtenberg, M.J., Kuiper, R.P., Chan, T.L., Goossens, M., Hebeda, K.M., Voorendt, M., Lee, T.Y., Bodmer, D., Hoenselaar, E., Hendriks‐Cornelissen, S.J., Tsui, W.Y., Kong, C.K., Brunner, H.G., van Kessel, A.G., Yuen, S.T., van Krieken, J.H., Leung, S.Y., and Hoogerbrugge, N. 2009. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 41:112‐117.
   Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti‐Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.M., Edsall, L., Antosiewicz‐Bourget, J., Stewart, R., Ruotti, V., Millar, A.H., Thomson, J.A., Ren, B., and Ecker, J.R. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315‐322.
   Lo, Y.M., Wong, I.H., Zhang, J., Tein, M.S., Ng, M.H., and Hjelm, N.M. 1999. Quantitative analysis of aberrant p16 methylation using real‐time quantitative methylation‐specific polymerase chain reaction. Cancer Res. 59:3899‐3903.
   Mikeska, T., Candiloro, I.L., and Dobrovic, A. 2010. The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics 2:561‐573.
   Mikeska, T., Bock, C., Do, H., and Dobrovic, A. 2012. DNA methylation biomarkers in cancer: Progress towards clinical implementation. Exp. Rev. Mol. Diagn. 12:473‐487.
   Mohn, F., Weber, M., Schubeler, D., and Roloff, T.C. 2009. Methylated DNA immunoprecipitation (MeDIP). Methods Mol. Biol. 507:55‐64.
   Nestor, C., Ruzov, A., Meehan, R., and Dunican, D. 2010. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5‐methylcytosine and 5‐hydroxymethylcytosine in DNA. BioTechniques 48:317‐319.
   Oda, M., Glass, J.L., Thompson, R.F., Mo, Y., Olivier, E.N., Figueroa, M.E., Selzer, R.R., Richmond, T.A., Zhang, X., Dannenberg, L., Green, R.D., Melnick, A., Hatchwell, E., Bouhassira, E.E., Verma, A., Suzuki, M., and Greally, J.M. 2009. High‐resolution genome‐wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 37:3829‐3839.
   Ozsolak, F. 2012. Third‐generation sequencing techniques and applications to drug discovery. Exp. Opin. Drug Discov. 7:231‐243.
   Pastor, W.A., Huang, Y., Henderson, H.R., Agarwal, S., and Rao, A. 2012. The GLIB technique for genome‐wide mapping of 5‐hydroxymethylcytosine. Nat. Protoc. 7:1909‐1917.
   Penn, N.W., Suwalski, R., O'Riley, C., Bojanowski, K., and Yura, R. 1972. The presence of 5‐hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem. J. 126:781‐790.
   Rand, K., Qu, W., Ho, T., Clark, S.J., and Molloy, P. 2002. Conversion‐specific detection of DNA methylation using real‐time polymerase chain reaction (ConLight‐MSP) to avoid false positives. Methods 27:114‐120.
   Rauch, T. and Pfeifer, G.P. 2005. Methylated‐CpG island recovery assay: A new technique for the rapid detection of methylated‐CpG islands in cancer. Lab. Invest. 85:1172‐1180.
   Robertson, A.B., Dahl, J.A., Vagbo, C.B., Tripathi, P., Krokan, H.E., and Klungland, A. 2011. A novel method for the efficient and selective identification of 5‐hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 39:e55.
   Robinson, M.D., Statham, A.L., Speed, T.P., and Clark, S.J. 2010. Protocol matters: Which methylome are you actually studying? Epigenomics 2:587‐598.
   Ross, J.P., Rand, K.N., and Molloy, P.L. 2010. Hypomethylation of repeated DNA sequences in cancer. Epigenomics 2:245‐269.
   Ruike, Y., Imanaka, Y., Sato, F., Shimizu, K., and Tsujimoto, G. 2010. Genome‐wide analysis of aberrant methylation in human breast cancer cells using methyl‐DNA immunoprecipitation combined with high‐throughput sequencing. BMC Genomics 11:137.
   Sadri, R. and Hornsby, P.J. 1996. Rapid analysis of DNA methylation using new restriction enzyme sites created by bisulfite modification. Nucleic Acids Res. 24:5058‐5059.
   Sandoval, J., Heyn, H., Moran, S., Serra‐Musach, J., Pujana, M.A., Bibikova, M., and Esteller, M. 2011. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6:692‐702.
   Shaw, R.J., Akufo‐Tetteh, E.K., Risk, J.M., Field, J.K., and Liloglou, T. 2006. Methylation enrichment pyrosequencing: Combining the specificity of MSP with validation by pyrosequencing. Nucleic Acids Res. 34:e78.
   Shen, J.C., Rideout, W.M. 3rd, and Jones, P.A. 1994. The rate of hydrolytic deamination of 5‐methylcytosine in double‐stranded DNA. Nucleic Acids Res. 22:972‐976.
   Shen, L., Guo, Y., Chen, X., Ahmed, S., and Issa, J.P. 2007. Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis. BioTechniques 42:48‐52.
   Smallwood, S.A. and Kelsey, G. 2012. De novo DNA methylation: A germ cell perspective. Trends Genet. 28:33‐42.
   Song, C.X., Clark, T.A., Lu, X.Y., Kislyuk, A., Dai, Q., Turner, S.W., He, C., and Korlach, J. 2012. Sensitive and specific single‐molecule sequencing of 5‐hydroxymethylcytosine. Nat. Methods 9:75‐77.
   Stoger, R., Kajimura, T.M., Brown, W.T., and Laird, C.D. 1997. Epigenetic variation illustrated by DNA methylation patterns of the fragile‐X gene FMR1. Hum. Mol. Genet. 6:1791‐1801.
   Suter, C.M. and Martin, D.I. 2007. Inherited epimutation or a haplotypic basis for the propensity to silence? Nat. Genet. 39:573‐576.
   Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L., and Rao, A. 2009. Conversion of 5‐methylcytosine to 5‐hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930‐935.
   Taylor, K.H., Kramer, R.S., Davis, J.W., Guo, J., Duff, D.J., Xu, D., Caldwell, C.W., and Shi, H. 2007. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 67:8511‐8518.
   Tost, J., Dunker, J., and Gut, I.G. 2003a. Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. BioTechniques 35:152‐156.
   Tost, J., Schatz, P., Schuster, M., Berlin, K., and Gut, I.G. 2003b. Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry. Nucleic Acids Res. 31:e50.
   Tufarelli, C., Stanley, J.A., Garrick, D., Sharpe, J.A., Ayyub, H., Wood, W.G., and Higgs, D.R. 2003. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34:157‐165.
   Tycko, B. 2010. Allele‐specific DNA methylation: Beyond imprinting. Hum. Mol. Genet. 19:R210‐R220.
   Wallace, E.V., Stoddart, D., Heron, A.J., Mikhailova, E., Maglia, G., Donohoe, T.J., and Bayley, H. 2010. Identification of epigenetic DNA modifications with a protein nanopore. Chem. Commun. 46:8195‐8197.
   Warnecke, P.M., Stirzaker, C., Melki, J.R., Millar, D.S., Paul, C.L., and Clark, S.J. 1997. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite‐treated DNA. Nucleic Acids Res. 25:4422‐4426.
   Warnecke, P.M., Stirzaker, C., Song, J., Grunau, C., Melki, J.R., and Clark, S.J. 2002. Identification and resolution of artifacts in bisulfite sequencing. Methods 27:101‐107.
   Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L., and Schubeler, D. 2005. Chromosome‐wide and promoter‐specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37:853‐862.
   Weisenberger, D.J., Trinh, B.N., Campan, M., Sharma, S., Long, T.I., Ananthnarayan, S., Liang, G., Esteva, F.J., Hortobagyi, G.N., McCormick, F., Jones, P.A., and Laird, P.W. 2008. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res. 36:4689‐4698.
   Williams, K., Christensen, J., Pedersen, M.T., Johansen, J.V., Cloos, P.A., Rappsilber, J., and Helin, K. 2011. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343‐348.
   Wojdacz, T.K. and Hansen, L.L. 2006. Reversal of PCR bias for improved sensitivity of the DNA methylation melting curve assay. BioTechniques 41:274‐278.
   Wojdacz, T.K., Dobrovic, A., and Hansen, L.L. 2008. Methylation‐sensitive high‐resolution melting. Nat. Protoc. 3:1903‐1908.
   Worm, J., Aggerholm, A., and Guldberg, P. 2001. In‐tube DNA methylation profiling by fluorescence melting curve analysis. Clin. Chem. 47:1183‐1189.
   Xiong, Z. and Laird, P.W. 1997. COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25:2532‐2534.
   Yang, H., Liu, Y., Bai, F., Zhang, J.Y., Ma, S.H., Liu, J., Xu, Z.D., Zhu, H.G., Ling, Z.Q., Ye, D., Guan, K.L., and Xiong, Y. 2013. Tumor development is associated with decrease of TET gene expression and 5‐methylcytosine hydroxylation. Oncogene 32:663‐669.
   You, J.S. and Jones, P.A. 2012. Cancer genetics and epigenetics: Two sides of the same coin? Cancer Cell 22:9‐20.
   Yu, M., Hon, G.C., Szulwach, K.E., Song, C.X., Zhang, L., Kim, A., Li, X., Dai, Q., Shen, Y., Park, B., Min, J.H., Jin, P., Ren, B., and He, C. 2012. Base‐resolution analysis of 5‐hydroxymethylcytosine in the mammalian genome. Cell 149:1368‐1380.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library