Measurement of Human Interleukin 11

Frann Bennett1, JoAnn Gianotti1, Abbie Celniker1, Katherine J. Turner1, Steven C. Clark1

1 Genetics Institute, Inc., Cambridge, Massachusetts
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 6.15
DOI:  10.1002/0471142735.im0615s18
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit describes an ELISA and a cell proliferation assay that can be used, respectively, to measure the protein level or biologic activity of human and murine interleukin 11 (IL‐11). The bioassay is based on the ability of IL‐11 to support growth of the B9‐11 cell line, a subline of B9 that has traditionally been used to measure levels of IL‐6. B9‐11 is substantially more responsive to IL‐11 than the T10 line used in older protocols. This new bioassay therefore provides improved sensitivity, with a detection limit of ˜20 pg/ml. An alternate procedure is provided that employs neutralizing antibodies in the cell proliferation bioassay to use to ensure that the activity of the desired molecule (IL‐11) is being measured in samples containing multiple cytokines. A describes maintenance of B9‐11 cells.

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Enzyme‐Linked Immunosorbent Assay (ELISA) for Human IL‐11
  • Basic Protocol 2: Cell Proliferation Assay for IL‐11 Activity
  • Alternate Protocol 1: Detection of IL‐11 in Mixed Cytokine Samples
  • Support Protocol 1: Maintenance of B9‐11 Cells
  • Reagents and Solutions
  • Commentary
  • Literature Cited
PDF or HTML at Wiley Online Library


Basic Protocol 1: Enzyme‐Linked Immunosorbent Assay (ELISA) for Human IL‐11

  • Coating antibody: 11h3/19.6.1 anti‐IL‐11 MAb (Genetics Institute; direct all requests to Biological Sample Request Coordinator)
  • recipeCoating buffer (see recipe)
  • recipeTHST (see recipe)
  • recipeTHSG (see recipe), 37°C
  • IL‐11 standard: dilute recipe1 µg/ml IL‐11 reference standard (see recipe) to 150 µg/ml in recipeTHST (store up to 1 month at −80°C)
  • 50% and 25% (v/v) pooled normal human serum/ recipeTHST (optional; use if testing human serum samples)
  • Samples to be assayed for IL‐11
  • Biotinylated llh3/15.6.13 anti‐IL‐11 MAb (Genetics Institute)
  • Avidin–alkaline phosphatase conjugate (Zymed)ELISA Amplification System (Life Technologies) containing: substrate for alkaline phosphatase: lyophilized NADPH amplifier for alkaline phosphatase: lyophilized alcohol dehydrogenase and diaphorase
  • Quench solution: 0.3 M H 2SO 4
  • EIA capture plate: 96‐well flat‐bottom microtiter plate (e.g., Costar)
  • 12‐channel pipettor
  • EIA plate washer (e.g., Dynatech)
  • Polypropylene micro test tubes racked in 8 × 12 format (e.g., Titertube from Bio‐Rad)
  • Acetate microtiter plate sealers (e.g., Costar)
  • EIA plate reader with 490‐nm filter (e.g., Vmax from Molecular Devices)
  • ELISA curve‐fitting software (e.g., SOFTmax from Molecular Devices)

Basic Protocol 2: Cell Proliferation Assay for IL‐11 Activity

  • Complete RPMI‐5 medium ( appendix 2A)
  • recipe1 µg/ml human IL‐11 reference standard (see recipe)
  • Unknown sample(s) containing IL‐11 (but no other cytokines)
  • B9‐11 cell culture (see protocol 4)
  • Multichannel pipettor and tips
  • 96‐well round‐bottom tissue culture–treated microtiter plates with lids (e.g., Costar)
  • IEC HN‐SII centrifuge (or equivalent)
  • Additional reagents and equipment for determining number of viable cells by trypan blue exclusion ( appendix 3B), labeling cells and determining [3H]thymidine incorporation ( appendix 3D), and quantitation of interleukin activity (units 6.3 & 6.13)
NOTE: All incubations are performed in a humidified 37°C, 5% CO 2 incubator unless otherwise noted.NOTE: All solutions and equipment coming into contact with cells must be sterile, and proper sterile technique should be used accordingly.

Alternate Protocol 1: Detection of IL‐11 in Mixed Cytokine Samples

  • B9‐11 cells, from Genetics Institute; direct all requests to Biological Sample Request Coordinator; cells available with prior permission of Dr. Bernard Klein, Institute for Molecular Genetics BP5051, 1919 Route de Mende, Montpellier, Cédex 1, France
  • Complete RPMI‐5 medium ( appendix 2A)
  • recipe1 µg/ml human IL‐11 (see recipe for IL‐11 reference standard)
  • 15‐ml conical centrifuge tube
  • 25‐cm2 tissue culture flask
  • IEC HN‐SII centrifuge (or equivalent)
  • Additional reagents and equipment for counting viable cells ( appendix 3B)
NOTE: All incubations are performed in a humidified 37°C, 5% CO 2 incubator unless otherwise noted.NOTE: All solutions and equipment coming into contact with cells must be sterile, and proper sterile technique should be used accordingly.
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Anderson, K.C., Morimoto, C., Paul, S.R., Chauhan, D., Williams, D., Cochran, M., and Barut, B.A. 1992. Interleukin‐11 promotes T cell dependent B cell differentiation in man. Blood 80:2797‐2804.
   Baumann, H. and Schendel, P. 1991. Interleukin‐11 regulates the hepatic expression of the same plasma protein genes as interleukin‐6. J. Biol. Chem. 266:20424‐20427.
   Broudy, V.C., Lin, N.L., and Kaushansky, K. 1995. Thrombopoietin (c‐mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin‐11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood 85:1719‐1726.
   Bruno, E., Briddell, R.A., Cooper, R.J., and Hoffman, R. 1991. Effects of recombinant interleukin 11 on human megakaryocyte progenitor cells. Exp. Hematol. 19:378‐381.
   Burstein, S.A., Mei, R., Henthorn, J., Friese, P., and Turner, K. 1992. Leukemia inhibitory factor and interleukin‐11 promote the maturation of murine and human megakaryocytes in vitro. J. Cell. Physiol. 153:305‐312.
   Du, X.X., Doerschuk, C.M., Arazi, A., and Williams, D.A. 1994. A bone marrow stromal‐derived growth factor, interleukin‐11 stimulates recovery of small intestinal mucosal cells after cytoablative therapy. Blood 83:33‐37.
   Du, X.X. and Williams, D.A. 1994. Interleukin‐11: A multifunctional growth factor derived from the hematopoietic microenvironment. Blood 83:2023‐2030.
   Fann, M.J. and Patterson, P.H. 1994. Neuropoietic cytokines and activin A differentially regulate the phenotype of cultured sympathetic neurons. Proc. Natl. Acad. Sci. U.S.A. 91:43‐47.
   Garman, R.D., Jacobs, K.A., Clark, S.C., and Raulet, D.H. 1987. B‐cell‐stimulatory factor 2 (β2‐interferon) functions as a second signal for interleukin 2 production by mature murine T cells. Proc. Natl. Acad. Sci. U.S.A. 84:7629‐7633.
   Girasole, G., Passeri, G., Jilka, R.L., and Manolagas, S.C. 1994. Interleukin‐11: A new cytokine critical for osteoclast development. J. Clin. Invest. 93:1516‐1524.
   Gordon, M.S., Sledge, G.W. Jr., Battiato, L., Breeden, E., Cooper, R., McCaskill‐Stevens, W.J., Kuca, B., Kaye, J., and Hoffman, R. 1993. The in vivo effects of subcutaneously (SC) administered recombinant human interleukin‐11 (NEUMEGA rhIL‐11 Growth Factor; rhIL‐11) in women with breast cancer (BC). Blood 82(Suppl. 1):498a.
   Hilton, D.J., Hilton, A.A., Raicevic, A., Rakar, S., Harrison‐Smith, M., Gough, N.M., Begley, C.G., Metcalf, D., Nicola, N.A., and Willson, T.A. 1994. Cloning of a murine IL‐11 receptor α‐chain; requirement for gp130 for high affinity binding and signal transduction. EMBO J. 13:4765‐4775.
   Hirayama, F., Shih, J., Awgulewitsch, A., Warr, G.W., Clark, S.C., and Ogawa, M. 1992. Clonal proliferation of murine lymphohemopoietic progenitors in culture. Proc. Natl. Acad. Sci. U.S.A. 89:5907‐5911.
   Jacobsen, S.E., Okkenhaug, C., Myklebust, J., Veiby, O.P., and Lyman, S.D. 1995. The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: Synergistic interactions with interleukin (IL) 11, IL‐12, and other hematopoietic growth factors. J. Exp. Med. 181:1357‐1363.
   Kawashima, I., Ohsumi, J., Mita‐Honjo, K., Shimoda‐Takano, K., Ishikawa, H., Sakakibara, S., Miyadai, K., and Takiguchi, Y. 1991. Molecular cloning of cDNA encoding adiposenesis inhibitory factor and identity with interleukin‐11. FEBS Lett. 283:199‐202.
   Keith, J.C. Jr., Albert, L., Sonis, S.T., Pfeiffer, C.J., and Schaub, R.G. 1994. IL‐11, a pleiotropic cytokine: Exciting new effects of IL‐11 on gastrointestinal mucosal biology. Stem Cells 12:79‐90.
   Leary, A.G., Zeng, H.Q., Clark, S.C., and Ogawa, M. 1992. Growth factor requirements for survival in Go and entry into the cell cycle of primitive hemopoietic progenitors. Proc. Natl. Acad. Sci. U.S.A. 89:4013‐4017.
   Leonard, J.P., Quinto, C.M., Kozitza, M.K., Neben, T.Y., and Goldman, S.J. 1994. Recombinant human interleukin‐11 stimulates multilineage hematopoietic recovery in mice after a myelosuppressive regimen of sublethal irradiation and carboplatin. Blood 83:1499‐1506.
   Lu, Z.Y., Zhang, X.G., Gu, Z.J., Yasukawa, K., Amiot, M., Etrillard, M., Bataille, R., and Klein, B. 1994. A highly sensitive quantitative bioassay for human interleukin‐11. J. Immunol. Methods 173:19‐26.
   Maier, R., Ganu, V., and Lotz, M. 1993. Interleukin‐11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases. J. Biol. Chem. 268:21527‐21532.
   Mehler, M.F., Rozental, R., Dougherty, M., Spray, D.C., and Kessler, J.A., 1993. Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature 362:62‐65.
   Neben, S., Donaldson, D., Sieff, C., Mauch, P., Bodine, D., Ferrara, J., Yetz‐Aldape, J., and Turner, K. 1994. Synergistic effects of interleukin‐11 with other growth factors on the expansion of murine hematopoietic progenitors and maintenance of stem cells in liquid culture. Exp. Hematol. 22:353‐359.
   Neuhaus, H., Bettenhausen, B., Bilinski, P., Simon‐Chazottes, D., Guenet, J.L., and Gossler, A. 1994. Etl2, a novel putative type‐I cytokine receptor expressed during mouse embryogenesis at high levels in skin and cells with skeletogenic potential. Dev. Biol. 166:531‐542.
   Nishimoto, N., Ogata, A., Shima, Y., Tani, Y., Ogawa, H., Nakagawa, M., Sugiyama, H., Yoshizaki, K., and Kishimoto, T. 1994. Oncostatin M, leukemia inhibitory factor, and interleukin 6 induce the proliferation of human plasmacytoma cells via the common signal transducer, gp130. J. Exp. Med. 179:1343‐1347.
   Paul, S.R., Bennett, F., Calvetti, J.A., Kelleher, K., Wood, C.R., O'Hara, R.M., Leary, A.C., Sibley, B., Clark, S.C., Williams, D.A., and Yang, Y.‐C. 1990. Molecular cloning of a cDNA encoding interleukin‐11, a stromal cell‐derived lymphopoietic and hematopoietic cytokine. Proc. Natl. Acad. Sci. U.S.A. 87:7512‐7516.
   Paul, S.R., Barut, B.A., Bennett, F., Cochran, M.A., and Anderson, K.C. 1992. Lack of a role of interleukin 11 in the growth of multiple myeloma. Leukemia Res. 16:247‐252.
   Pennica, D., Shaw, K.J., Swanson, T.A., Moore, M.W., Shelton, D.L., Zioncheck, K.A., Rosenthal, A., Taga, T., Paoni, N.F., and Wood, W.I. 1995. Cardiotrophin‐1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J. Biol. Chem. 270:10915‐10922.
   Potten, C.S. 1995. Interleukin‐11 protects the clonogenic stem cells in murine small‐intestinal crypts from impairment of their reproductive capacity by radiation. Int. J. Cancer 62:356‐361.
   Rodriguez, M.H., Arnaud, S., and Blanchet, J.P. 1995. IL‐11 directly stimulates murine and human erythroid burst formation in semisolid cultures. Exp. Hematol. 23:545‐550.
   Schlerman, F.J., Bree, A.G., Kaviani, M.D., Hitz, S.L., Donnelly, L.H., Mason, L.E., Schaub, R.G., Grupp, S.A., and Goldman, S.J. 1996. Thrombopoietic activity of recombinant human interleukin 11 (rhIL‐11) in normal and myelosuppressed nonhuman primates. Stem Cells. In press.
   Tepler, I., Elias, L., Smith, J.W., Hussein, M., Rosen, G., Chang, A.Y.‐C., Moore, J.O., Gordon, M.S., Kuca, B., Beach, K.J., Loewy, J.W., Garnick, M.B., and Kaye, J.A. 1996. A randomized trial of recombinant human interleukin eleven in cancer patients with a history of severe thrombocytopenia due to chemotherapy. Blood. In press.
   Thies, R.S., Bauduy, M., Ashton, B.A., Kurtzberg, L., Wozney, J.M., and Rosen, V. 1992. Recombinant human bone morphogenetic protein‐2 induces osteoblastic differentiation in W‐20‐17 stromal cells. Endocrinology 130:1318‐1324.
   Trepicchio, W.L., Bozza, M., Pednault, G., and Dorner, A.J., Recombinant human interleukin‐11 attenuation of the inflammatory response through downregulation of proinflammatory cytokine release and nitric oxide production. Submitted for publication.
   Turner, K.J. and Clark, S.C. 1995. Interleukin‐11: Biological and clinical perspectives. In Hematopoietic Growth Factors in Clinical Applications. (R. Mertelsmann and F. Herrmann, eds.) pp.315‐336. Marcel Dekker, New York.
   Yang, Y.‐C. 1993. Interleukin 11: An overview. Stem Cells 11:474‐486.
   Yin, T., Schendel, P., and Yang, Y. 1992. Enhancement of in vitro and in vivo antigen‐specific antibody responses by interleukin 11. J. Exp. Med. 175:211‐216.
   Zhang, X.G., Gu, J.J., Lu, Z.Y., Yasukawa, K., Yancopoulos, G.D., Turner, K., Shoyab, M., Taga, T., Kishimoto, T., Bataille, R., and Klein, B. 1994. Ciliary neurotropic factor, interleukin 11, leukemia inhibitory factor, and oncostatin M are growth factors for human myeloma cell lines using the interleukin 6 signal transducer gp130. J. Exp. Med. 179:1337‐1342.
PDF or HTML at Wiley Online Library