Measurement of Cytokine Production Using Whole Blood

Cary W. Thurm1, John F. Halsey1

1 IBT Reference Laboratory, ProGene Biomedical, Lenexa, Kansas
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 7.18B
DOI:  10.1002/0471142735.im0718bs66
Online Posting Date:  May, 2005
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Whole blood (WB) ex vivo stimulation assays are useful for measuring cytokine responses due to the easy access of samples from healthy donors and patients and the minimal processing of the sample required. Because the assay mimics the natural environment, WB culture may be the best milieu in which to study cell activation and cytokine production in vitro. Whole blood stimulation has been used to investigate the cellular responsiveness to a variety of stimuli, including bacterial endotoxin (LPS), antigens, allergens, and antibiotics. Various clinical uses of whole blood stimulation assays have been suggested, including the assessment of autoimmune diseases, the monitoring of drug and vaccine efficacy, and immunotoxicity. Thus, whole blood cell culture may be useful in studying the biological effects of potential allergenic and/or antigenic substances or drugs on immune cell activation and cytokine secretion.

Keywords: whole blood ex vivo stimulation; antigen; mitogen; cytokine; innate immunity; cell‐mediated immunity

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Ex Vivo Stimulation of Whole Blood
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Ex Vivo Stimulation of Whole Blood

  Materials
  • Antigen or mitogen (see Table 7.18.1)
  • Inhibitors (e.g., dexamethasone)
  • RPMI 1640 medium supplemented with 2 mM L‐glutamine, room temperature
  • Whole blood sample collected into sodium heparin anti‐coagulant (typically 15 USP sodium heparin/ml of blood)
  • Polypropylene 1.5‐ml microcentrifuge tubes or 24‐well Costar polystyrene tissue culture plates, or 5‐ml 12 × 75–mm Falcon polypropylene round‐bottom culture tubes
  • 37°C, 5% CO 2 humidified incubator
    Table 7.8.1   MaterialsAntigen/Mitogen Concentrations

    Antigen Final concentration Incubation time Cytokines analyzed
    LPS 4–50 ng/ml 4–8 hr TNF‐α, IL‐1β, IL‐6, IL‐8
    PHA 0.5–10 µg/ml 4–24 hr TNF‐α, IL‐1β, IL‐6, IL‐8, IL‐2, IL‐4, IFN‐γ, IL‐10
    Candida albicans soluble extract 40 µg/ml 4–24 hr TNF‐α, IL‐1β, IL‐2, IL‐6, GM‐CSF, IFN‐γ
    Tetanus toxoid 0.1–1.0 Lf/ml 2–48 hr TNF‐α, IL‐1β, IL‐2, IL‐6, GM‐CSF, IFN‐γ
    CpG DNA 10 µM 4–8 hr TNF‐α, IL‐1β, IL‐6, IL‐8
    Zymosan 100–500 ng/ml 4–24 hr TNF‐α, IL‐1β, IL‐6, IL‐8
    Anti‐CD3 10 µg/ml 4–24 hr TNF‐α, IFN‐γ, IL‐1β, IL‐2, IL‐4, IL‐6, IL‐10

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Bellete, B., Coberly, J., Barnes, G.L., Ko, C., Chaisson, R.E., Comstock, G.W., and Bishai, W.R., 2002. Evaluation of a whole‐blood interferon‐gamma release assay for the detection of Mycobacterium tuberculosis infection in 2 study populations. Clin. Infect. Dis. 34:1449‐1456.
   Benlounes, N., Candalh, C., Matarazzo, P., Dupont, C., and Heyman, M. 1999. The time‐course of milk antigen‐induced TNF‐alpha secretion differs according to the clinical symptoms in children with cow's milk allergy. J. Allergy Clin. Immunol. 104:863‐869.
   Daynes, R.A., Dowell, T., and Araneo, B.A. 1991. Platelet‐derived growth factor is a potent biologic response modifier of T cells. J. Exp. Med. 174:1323‐1333.
   De Groote, D., Zangerle, P.F., Gevaert, Y., Fassotte, M.F., Beguin, Y., Noizat‐Pirenne, F., Pirenne, J., Gathy, R., Lopez, M.., Dehart, I., Igot, D., Baudrihaye, M., Delacroix, D., and Franchimont, P. 1992. Direct stimulation of cytokines (IL‐1 beta, TNF‐alpha, IL‐6, IL‐2, IFN‐gamma and GM‐CSF) in whole blood. I. Comparison with isolated PBMC stimulation. Cytokine 4:239‐248.
   Desch, C.E., Kovach, N.L., Present, W., Broyles, C., and Harlan, J.M. 1989. Production of human tumor necrosis factor from whole blood ex vivo. Lymphokine Res. 8:141‐146.
   Gale, D.D., Landells, L.J., Spina, D., Miller, A.J., Smith, K., Nichols, T., Rotshteyn, Y., Tonelli, A., Lacouture, P., Burch, R.M., Page, C.P., and O'Connor, B.J. 2002. Pharmacokinetic and pharmacodynamic profile following oral administration of the phosphodiesterase (PDE) 4 inhibitor V11294A in healthy volunteers. Br. J. Clin. Pharmacol. 54:478‐484.
   Heinzel, F.P., Sadick, M.D., Mutha, S.S., and Locksley, R.M. 1991. Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc. Natl. Acad. Sci. U.S.A. 88:7011‐7015.
   Holobaugh, P.A. and McChesney, D.C. 1990. Effect of anticoagulants and heat on the detection of tumor necrosis factor in murine blood. J. Immunol. Methods 135:95‐99.
   Kalechman, Y., Herman, S., Gafter, U., and Sredni, B. 1993. Enhancing effects of autologous erythrocytes on human or mouse cytokine secretion and IL‐2R expression. Cell Immunol. 148:114‐129.
   Kurdowska, A., Noble, J.M., and Griffitch, D.E. 2001. The effect of azithromycin and clarithromycin on ex vivo interleukin‐8(IL‐8) release from whole blood and IL‐8 production by human alveolar macrophages. J. Antimicrob. Chemother. 47:867‐870.
   Langezaal, I., Coecke, S., and Hartung, T. 2001. Whole blood cytokine response as a measure of immunotoxicity. Toxicol. In Vitro 15:313‐318.
   Miles, E.A., Bakewell, L., and Calder, P.C. 2003. Production of lymphocyte‐derived cytokines by whole umbilical cord blood cultures stimulated with mitogens and allergens. Cytokine 21:74‐83.
   Nomura, L.E., Walker, J.M., and Maecker, H.T. 2000. Optimization of whole blood antigen‐specific cytokine assays for CD4(+) Tcells. Cytometry 40:60‐68.
   Picard, C., Puel, C., Bonnet, M., Ku, E‐L., Bustamante, J., Yang, K., Soudais, C., Dupus, S., Feinberg, J., Fieschi, C., Elbim, D., Hitchcock, R., Lammas, D., Davies, G., Al‐Ghonaium, A., Al‐Rayes, H., Frayha, H.H., Rucker, R., Hawn, T.R., Aderem, A., Tufenkeji, H., Haraguchi, S., Day, N.K., Good, R.A., Gougerot‐Pocidalo, M‐A., Ozinsky, A., and Casanova, J‐L. 2003. Pyogenic bacterial infections in humans with IRAK‐4 deficiency. Science 299:2076‐2079.
   Rawlins, P., Mander, T., Sadeghi, R., Hill, S., Gammon, G., Foxwell, B., Wrigley, S., and Moore, M. 1999. Inhibition of endotoxin‐induced TNF‐alpha production in macrophages by 5Z‐7‐oxo‐zeaenol and other fungal resorcylic acid lactones. Int. J. Immunopharmacol. 21:799‐814.
   Riches, P., Gooding, R., Millar, B.C., and Rowbottom, A.W. 1992. Influence of collection and separation of blood samples on plasma IL‐1, IL‐6 and TNF‐alpha concentrations. J Immunol. Methods 153:125‐131.
   Thavasu, P.W., Longhurst, S., Joel, S.P., Slevin, M.L., and Balkwill, F.R. 1992. Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J. Immunol. Methods 153:115‐124.
   Xue, C.B., Voss, M.E., Nelson, D.J., Duan, J.J., Cherney, R.J., Jacobson, I.C., He, X., Roderick, J., Chen, L., Corbett, R.L., Wang, L., Meyer, D.T., Kennedy, K., DeGradodagger, W.F., Hardman, K.D., Teleha, C.A., Jaffee, B.D., Liu, R.Q., Copeland, R.A., Covington, M.B., Christ, D.D., Trzaskos, J.M., Newton, R.C., Magolda, R.L., Wexler, R.R., and Decicco, C.P. 2001. Design, synthesis, and structure‐activity relationships of macrocyclic hydroxamic acids that inhibit tumor necrosis factor alpha release in vitro and in vivo. J. Med. Chem. 44:2636‐2660.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library