Use of Proteasome Inhibitors

Sondra L. Downey1, Bogdan I. Florea2, Herman S. Overkleeft2, Alexei F. Kisselev1

1 Norris Cotton Cancer Center and Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, 2 Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 9.10
DOI:  10.1002/0471142735.im0910s109
Online Posting Date:  April, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Proteasome inhibitors are indispensable research tools in immunology and cell biology. With numerous proteasome inhibitors available commercially, choosing the appropriate compound for a biological experiment may be challenging, especially for a novice. This unit provides an overview of the proteasome inhibitors commonly used in research. It discusses how to select an appropriate highly specific inhibitor, its concentration, and length of exposure for mammalian cell culture experiments. In addition, assays that can be used to confirm proteasome inhibition are discussed. © 2015 by John Wiley & Sons, Inc.

Keywords: proteosome inhibitors; peptide aldehydes; boronates; peptide epoxyketones

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Specificity of Proteasome Inhibitors Depends on Their Chemical Structure
  • Choosing the Correct Concentration of a Proteasome Inhibitor
  • Measurement of Proteasome Inhibition
  • Proteasome‐Inhibitor Induced Apoptosis
  • Interpretation of Results of Proteasome Inhibitor Experiments
  • Summary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Adams, J., Behnke, M., Chen, S., Cruickshank, A.A., Dick, L.R., Grenier, L., Klunder, J.M., Ma, Y.T., Plamondon, L., and Stein, R.L. 1998. Potent and selective inhibitors of the proteasome: Dipeptidyl boronic acids. Bioorg. Med. Chem. Lett. 8:333‐338.
  Anchoori, R.K., Karanam, B., Peng, S., Wang, J.W., Jiang, R., Tanno, T., Orlowski, R.Z., Matsui, W., Zhao, M., Rudek, M.A., Hung, C.F., Chen, X., Walters, K.J., and Roden, R.B. 2013. A bis‐benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Can. Cell 24:791‐805.
  Arastu‐Kapur, S., Anderl, J.L., Kraus, M., Parlati, F., Shenk, K.D., Lee, S.J., Muchamuel, T., Bennett, M.K., Driessen, C., Ball, A.J., and Kirk, C.J. 2011. Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: A link to clinical adverse events. Clin. Cancer Res. 17:2734‐2743.
  Arendt, C.S. and Hochstrasser, M. 1997. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active‐site formation. Proc. Natl. Acad. Sci. 94:7156‐7161.
  Bachovchin, D.A., Koblan, L.W., Wu, W., Liu, Y., Li, Y., Zhao, P., Woznica, I., Shu, Y., Lai, J.H., Poplawski, S.E., Kiritsy, C.P., Healey, S.E., DiMare, M., Sanford, D.G., Munford, R.S., Bachovchin, W.W., and Golub, T.R. 2014. A high‐throughput, multiplexed assay for superfamily‐wide profiling of enzyme activity. Nat. Chem. Biol. 10:656‐663.
  Britton, M., Lucas, M.M., Downey, S.L., Screen, M., Pletnev, A.A., Verdoes, M., Tokhunts, R.A., Amir, O., Goddard, A.L., Pelphrey, P.M., Wright, D.L., Overkleeft, H.S., and Kisselev, A.F. 2009. Selective inhibitor of proteasome's caspase‐like sites sensitizes cells to specific inhibition of chymotrypsin‐like sites. Chem. Biol. 16:1278‐1289.
  Chen, P. and Hochstrasser, M. 1996. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86:961‐972.
  Chondrogianni, N., Stratford, F.L., Trougakos, I.P., Friguet, B., Rivett, A.J., and Gonos, E.S. 2003. Central role of the proteasome in senescence and survival of human fibroblasts: Induction of a senescence‐like phenotype upon its inhibition and resistance to stress upon its activation. J. Biol. Chem. 278:28026‐28037.
  Demo, S.D., Kirk, C.J., Aujay, M.A., Buchholz, T.J., Dajee, M., Ho, M.N., Jiang, J., Laidig, G.J., Lewis, E.R., Parlati, F., Shenk, K.D., Smyth, M.S., Sun, C.M., Vallone, M.K., Woo, T.M., Molineaux, C.J., and Bennett, M.K. 2007. Antitumor activity of PR‐171, a novel irreversible inhibitor of the proteasome. Cancer Res. 67:6383‐6391.
  Dick, L.R., Cruikshank, A.A., Destree, A.T., Grenier, L., McCormack, T.A., Melandri, F.D., Nunes, S.L., Palombella, V.J., Parent, L.A., Plamondon, L., and Stein, R.L. 1997. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 272:182‐188.
  Fenteany, G., Standaert, R.F., Lane, W.S., Choi, S., Corey, E.J., and Schreiber, S.L. 1995. Inhibition of proteasome activities and subunit‐specific amino‐terminal threonine modification by lactacystin. Science 268:726‐731.
  Figueiredo‐Pereira, M.E., Berg, K.A., and Wilk, S. 1994. A new inhibitor of the chymotrypsin‐like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin‐protein conjugates in a neuronal cell. J. Neurochem. 63:1578‐1581.
  Finley, D. 2009. Recognition and processing of ubiquitin‐protein conjugates by the proteasome. Annu. Rev. Biochem 78:477‐513.
  Geier, E., Pfeifer, G., Wilm, M., Lucchiari‐Hartz, M., Baumeister, W., Eichmann, K., and Niedermann, G. 1999. A giant protease with potential to substitute for some functions of the proteasome. Science 283:978‐981.
  Granot, Z., Kobiler, O., Melamed‐Book, N., Eimerl, S., Bahat, A., Lu, B., Braun, S., Maurizi, M.R., Suzuki, C.K., Oppenheim, A.B., and Orly, J. 2007. Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: The unexpected effect of proteasome inhibitors. Mol. Endocrinol. 21:2164‐2177.
  Groll, M. and Huber, R. 2004. Inhibitors of the eukaryotic 20S proteasome core particle: A structural approach. Biochim. Biophys. Acta 1695:33‐44.
  Groll, M., Koguchi, Y., Huber, R., and Kohno, J. 2001. Crystal structure of the 20S proteasome:TMC‐95A complex: A non‐covalent proteasome inhibitor. J. Mol. Biol. 311:543‐548.
  Groll, M., Kim, K.B., Kairies, N., Huber, R., and Crews, C.M. 2000. Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of α',β'‐epoxyketone proteasome inhibitors. J. Am. Chem. Soc. 122:1237‐1238.
  Gronostajski, R.M., Pardee, A.B., and Goldberg, A.L. 1985. The ATP dependence of the degradation of short‐ and long‐lived proteins in growing fibroblasts. J. Biol. Chem. 260:3344‐3349.
  Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U., and Wolf, D.H. 1997. The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J. Biol. Chem 272:25200‐25209.
  Ito, H., Watanabe, M., Kim, Y.T., and Takahashi, K. 2009. Inhibition of rat liver cathepsins B and L by the peptide aldehyde benzyloxycarbonyl‐leucyl‐leucyl‐leucinal and its analogues. J. Enzyme. Inhib. Med. Chem. 24:279‐286.
  Kisselev, A.F. and Goldberg, A.L. 2001. Proteasome inhibitors: From research tools to drug candidates. Chem. Biol. 8:739‐758.
  Kisselev, A.F., Callard, A., and Goldberg, A.L. 2006. Importance of different active sites in protein breakdown by 26S proteasomes and the efficacy of proteasome inhibitors varies with the protein substrate. J. Biol. Chem. 281:8583‐8590.
  Kisselev, A.F., van der Linden, W.A., and Overkleeft, H.S. 2012. Proteasome inhibitors: An expanding army attacking a unique target. Chem. Biol. 19:99‐115.
  Kulathu, Y. and Komander, D. 2012. Atypical ubiquitylation—the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13:508‐523.
  Lee, B.H., Lee, M.J., Park, S., Oh, D.C., Elsasser, S., Chen, P.C., Gartner, C., Dimova, N., Hanna, J., Gygi, S.P., Wilson, S.M., King, R.W., and Finley, D. 2010. Enhancement of proteasome activity by a small‐molecule inhibitor of USP14. Nature 467:179‐184.
  Lim, H.S., Archer, C.T., and Kodadek, T. 2007. Identification of a peptoid inhibitor of the proteasome 19S regulatory particle. J. Am. Chem. Soc. 129:7750‐7751.
  Mirabella, A.C., Pletnev, A.A., Downey, S.L., Florea, B.I., Shabaneh, T.B., Britton, M., Verdoes, M., Filippov, D.V., Overkleeft, H.S., and Kisselev, A.F. 2011. Specific cell‐permeable inhibitor of proteasome trypsin‐like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chem. Biol. 18:608‐618.
  Molineaux, S.M. 2012. Targeting proteasomal protein degradation in cancer. Clin. Cancer Res. 18:15‐20.
  Moravec, R.A., O'Brien, M.A., Daily, W.J., Scurria, M.A., Bernad, L., and Riss, T.L. 2009. Cell‐based bioluminescent assays for all three proteasome activities in a homogeneous format. Anal. Biochem. 387:294‐302.
  Ostrowska, H., Wojcik, C., Omura, S., and Worowski, K. 1997. Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A‐like enzyme. Biochem Biophys. Res. Commun. 234:729‐732.
  Palombella, V.J., Rando, O.J., Goldberg, A.L., and Maniatis, T. 1994. The ubiquitin‐proteasome pathway is required for processing the NF‐kappa‐B1 precursor protein and the activation of NF‐kappa‐B. Cell 78:773‐785.
  Potts, B.C., Albitar, M.C., Anderson, K.C., Baritaki, S., Berkers, C., Bonavida, B., Chandra, J., Chauchan, D., Cusacck, J.C., Fenical, W., Ghobrial, I.M., Groll, M., Jense, P.R., Lam, K.S., Llloyd, G.K., McBride, W., McConKey, D.J., Miller, C.P., Neuteboom, S.T.C., Oki, Y., Ovaa, H., Pajonk, F., Richardson, P.G., Roccaro, A.M., Sloss, C.M., Spear, A.M., Valashi, E., Younes, A., and Palladino, M.A. 2011. Marizomib, a proteasome inhibitor for all seasons: Preclinical profile and a framewrok for clinical trials. Curr. Can. Drug. Targets. 11:254‐284.
  Rock, K.L. and Goldberg, A.L. 1999. Degradation of cell proteins and generation of MHC class I‐presented peptides. Ann. Rev. Immunol. 17:739‐779.
  Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A.L. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class 1 molecules. Cell 78:761‐771.
  Shabaneh, T.B., Downey, S.L., Goddard, A.L., Screen, M., Lucas, M.M., Eastman, A., and Kisselev, A.F. 2013. Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib. PloS one 8:e56132.
  Tsubuki, S., Saito, Y., Tomioka, M., Ito, H., and Kawashima, S. 1996. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di‐leucine and tri‐leucine. J. Biochem. 119:572‐576.
  Verdoes, M., Willems, L.I., van der Linden, W.A., Duivenvoorden, B.A., van der Marel, G.A., Florea, B.I., Kisselev, A.F., and Overkleeft, H.S. 2010. A panel of subunit‐selective activity‐based proteasome probes. Org. Biomol. Chem.8:2719‐2727.
  Verdoes, M., Florea, B.I., Menendez‐Benito, V., Witte, M.D., van der Linden, W.A., van den Nieuwendijk, A.M.C.H., Hofmann, T., Berkers, C., van Leeuwen, F.W.B., Groothuis, T.A., Leeuwenburgh, M.A., Ovaa, H., Neefjes, J., Filippov, D.V., van der Marel, G.A., Dantuma, N.P., and Overkleeft, H.S. 2006. A fluorescent broad spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem. Biol. 13:1217‐1226.
  Wilkins, O.M., Downey, S.L., Weyburne, E.S., Williams, D.A., Mirabella, A.C., Overkleeft, H.S., and Kisselev, A.F. 2014. Cell‐line‐specific high background in the Proteasome‐Glo assay of proteasome trypsin‐like activity. Anal. Biochem. 451:1‐3.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library