Immunologic Applications of Conditional Gene Modification Technology in the Mouse

Suveena Sharma1, Jinfang Zhu1

1 Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 10.34
DOI:  10.1002/0471142735.im1034s105
Online Posting Date:  April, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Since the success of homologous recombination in altering mouse genome and the discovery of Cre‐loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue‐specific gene over‐expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre‐expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Curr. Protoc. Immunol. 105:10.34.1‐10.34.13. © 2014 by John Wiley & Sons, Inc.

Keywords: Cre; loxP; conditional knockout; transgenic; bacterial artificial chromosome (BAC); hematopoietic cells; fate mapping; inducible gene expression; lymphocyte cell development and differentiation

PDF or HTML at Wiley Online Library

Table of Contents

  • General Introduction to the Cre/LoxP System
  • Applications of Cre‐LoxP
  • Tissue‐Specific Cre Transgenic Mice
  • Things to be Considered
  • Useful Resources and Databases Related to Mouse Lines
  • Conclusions
  • Acknowledgments
  • Competing Financial Interests
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Aghajani, K., Keerthivasan, S., Yu, Y., and Gounari, F. 2012. Generation of CD4CreER(T(2)) transgenic mice to study development of peripheral CD4‐T‐cells. Genesis 50:908‐913.
  Anastassiadis, K., Fu, J., Patsch, C., Hu, S., Weidlich, S., Duerschke, K., Buchholz, F., Edenhofer, F., and Stewart, A.F. 2009. Dre recombinase, like Cre, is a highly efficient site‐specific recombinase in E. coli, mammalian cells and mice. Dis. Model Mech. 2:508‐515.
  Baron, U. and Bujard, H. 2000. Tet repressor‐based system for regulated gene expression in eukaryotic cells: Principles and advances. Methods Enzymol. 327:401‐421.
  Belteki, G., Haigh, J., Kabacs, N., Haigh, K., Sison, K., Costantini, F., Whitsett, J., Quaggin, S.E., and Nagy, A. 2005. Conditional and inducible transgene expression in mice through the combinatorial use of Cre‐mediated recombination and tetracycline induction. Nucleic Acids Res. 33:e51.
  Bockamp, E., Maringer, M., Spangenberg, C., Fees, S., Fraser, S., Eshkind, L., Oesch, F., and Zabel, B. 2002. Of mice and models: Improved animal models for biomedical research. Physiol. Genomics 11:115‐132.
  Boross, P., Breukel, C., van Loo, P.F., van der Kaa, J., Claassens, J.W., Bujard, H., Schönig, K., and Verbeek, J.S. 2009. Highly B lymphocyte‐specific tamoxifen inducible transgene expression of CreER T2 by using the LC‐1 locus BAC vector. Genesis 47:729‐735.
  Branda, C.S. and Dymecki, S.M. 2004. Talking about a revolution: The impact of site‐specific recombinases on genetic analyses in mice. Dev. Cell 6:7‐28.
  Brocard, J., Warot, X., Wendling, O., Messaddeq, N., Vonesch, J.L., Chambon, P., and Metzger, D. 1997. Spatio‐temporally controlled site‐specific somatic mutagenesis in the mouse. Proc. Natl. Acad. Sci. U.S.A. 94:14559‐14563.
  Buch, T., Heppner, F.L., Tertilt, C., Heinen, T.J., Kremer, M., Wunderlich, F.T., Jung, S., and Waisman, A. 2005. A Cre‐inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2:419‐426.
  Capecchi, M.R. 1989a. Altering the genome by homologous recombination. Science 244:1288‐1292.
  Capecchi, M.R. 1989b. The new mouse genetics: Altering the genome by gene targeting. Trends Genet. 5:70‐76.
  Carlson, D.F., Fahrenkrug, S.C., and Hackett, P.B. 2012. Targeting DNA with fingers and TALENs. Mol. Ther. Nucleic Acids 1:e3.
  Caton, M.L., Smith‐Raska, M.R., and Reizis, B. 2007. Notch‐RBP‐J signaling controls the homeostasis of CD8‐ dendritic cells in the spleen. J. Exp. Med. 204:1653‐1664.
  Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R., and Forster, I. 1999. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8:265‐277.
  de Boer, J., Williams, A., Skavdis, G., Harker, N., Coles, M., Tolaini, M., Norton, T., Williams, K., Roderick, K., Potocnik, A.J., and Kioussis, D. 2003. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33:314‐325.
  Donnelly, M.L., Luke, G., Mehrotra, A., Li, X., Hughes, L.E., Gani, D., and Ryan, M.D. 2001. Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: A putative ribosomal 'skip'. J. Gen. Virol. 82:1013‐1025.
  Dymecki, S.M. 1996a. A modular set of Flp, FRT and lacZ fusion vectors for manipulating genes by site‐specific recombination. Gene 171:197‐201.
  Dymecki, S.M. 1996b. Flp recombinase promotes site‐specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93:6191‐6196.
  Evans, M.J. and Kaufman, M.H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154‐156.
  Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. 1996. Ligand‐activated site‐specific recombination in mice. Proc. Natl. Acad. Sci. U.S.A. 93:10887‐10890.
  Felsher, D.W. and Bishop, J.M. 1999. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4:199‐207.
  Fiering, S., Epner, E., Robinson, K., Zhuang, Y., Telling, A., Hu, M., Martin, D.I., Enver, T., Ley, T.J., and Groudine, M. 1995. Targeted deletion of 5′HS2 of the murine beta‐globin LCR reveals that it is not essential for proper regulation of the beta‐globin locus. Genes Dev. 9:2203‐2213.
  Gossen, M. and Bujard, H. 1992. Tight control of gene expression in mammalian cells by tetracycline‐responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89:5547‐5551.
  Gossen, M., Freundlieb, S., Bender, G., Müller, G., Hillen, W., and Bujard, H. 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766‐1769.
  Groth, A.C., Fish, M., Nusse, R., and Calos, M.P. 2004. Construction of transgenic Drosophila by using the site‐specific integrase from phage phiC31. Genetics 166:1775‐1782.
  Gu, H., Zou, Y.R., and Rajewsky, K. 1993. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre‐loxP‐mediated gene targeting. Cell 73:1155–1164.
  Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., and Rajewsky, K. 1994. Deletion of a DNA polymerase beta gene segment in T cells using cell type‐specific gene targeting. Science 265:103‐106.
  Hamilton, D.L. and Abremski, K. 1984. Site‐specific recombination by the bacteriophage P1 lox‐Cre system: Cre‐mediated synapsis of two lox sites. J. Mol. Biol. 178:481‐486.
  Hartung, M. and Kisters‐Woike, B. 1998. Cre mutants with altered DNA binding properties. J. Biol. Chem. 273:22884‐22891.
  Hobeika, E., Thiemann, S., Storch, B., Jumaa, H., Nielsen, P.J., Pelanda, R., and Reth, M. 2006. Testing gene function early in the B cell lineage in mb1‐cre mice. Proc. Natl. Acad. Sci. U.S.A. 103:13789‐13794.
  Hoess, R.H. and Abremski, K. 1985. Mechanism of strand cleavage and exchange in the Cre‐lox site‐specific recombination system. J. Mol. Biol. 181:351‐362.
  Hoess, R.H., Ziese, M., and Sternberg, N. 1982. P1 site‐specific recombination: Nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. U.S.A. 79:3398‐3402.
  Indra, A.K., Warot, X., Brocard, J., Bornert, J.M., Xiao, J.H., Chambon, P., and Metzger, D. 1999. Temporally‐controlled site‐specific mutagenesis in the basal layer of the epidermis: Comparison of the recombinase activity of the tamoxifen‐inducible Cre‐ER(T) and Cre‐ER(T2) recombinases. Nucleic Acids Res. 27:4324‐4327.
  Ivanova, A., Signore, M., Caro, N., Greene, N.D., Copp, A.J., and Martinez‐Barbera, J.P. 2005. In vivo genetic ablation by Cre‐mediated expression of diphtheria toxin fragment A. Genesis 43:129‐135.
  Jacob, J. and Baltimore, D. 1999. Modelling T‐cell memory by genetic marking of memory T cells in vivo. Nature 399:593‐597.
  Keravala, A. and Calos, M.P. 2008. Site‐specific chromosomal integration mediated by phiC31 integrase. Methods Mol. Biol. 435:165‐173.
  Klinger, M., Kim, J.K., Chmura, S.A., Barczak, A., Erle, D.J., and Killeen, N. 2009. Thymic OX40 expression discriminates cells undergoing strong responses to selection ligands. J. Immunol. 182:4581‐4589.
  Kuhn, R., Schwenk, F., Aguet, M., and Rajewsky, K. 1995. Inducible gene targeting in mice. Science 269:1427‐1429.
  Lakso, M., Pichel, J.G., Gorman, J.R., Sauer, B., Okamoto, Y., Lee, E., Alt, F.W., and Westphal, H. 1996. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. U.S.A. 93:5860‐5865.
  Lee, P.P., Fitzpatrick, D.R., Beard, C., Jessup, H.K., Lehar, S., Makar, K.W., Pérez‐Melgosa, M., Sweetser, M.T., Schlissel, M.S., Nguyen, S., Cherry, S.R., Tsai, J.H., Tucker, S.M., Weaver, W.M., Kelso, A., Jaenisch, R., and Wilson, C.B. 2001. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15:763‐774.
  Loonstra, A., Vooijs, M., Beverloo, H.B., Allak, B.A., van Drunen, E., Kanaar, R., Berns, A., and Jonkers, J. 2001. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 98:9209‐9214.
  Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., Lein, E.S., and Zeng, H. 2010. A robust and high‐throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13:133‐140.
  Maekawa, Y., Minato, Y., Ishifune, C., Kurihara, T., Kitamura, A., Kojima, H., Yagita, H., Sakata‐Yanagimoto, M., Saito, T., Taniuchi, I., Chiba, S., Sone, S., and Yasutomo, K. 2008. Notch2 integrates signaling by the transcription factors RBP‐J and CREB1 to promote T cell cytotoxicity. Nat. Immunol. 9:1140‐1147.
  Mao, X., Fujiwara, Y., and Orkin, S.H. 1999. Improved reporter strain for monitoring Cre recombinase‐mediated DNA excisions in mice. Proc. Natl. Acad. Sci. U.S.A.96:5037‐5042.
  Metzger, D., Clifford, J., Chiba, H., and Chambon, P. Conditional site‐specific recombination in mammalian cells using a ligand‐dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. U.S.A. 92:6991‐6995.
  Nagy, A. 2000. Cre recombinase: The universal reagent for genome tailoring. Genesis 26:99‐109.
  Nagy, A., Mar, L., and Watts, G. 2009. Creation and use of a cre recombinase transgenic database. Methods Mol. Biol. 530:365‐378.
  Novak, A., Guo, C., Yang, W., Nagy, A., and Lobe, C.G. 2000. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre‐mediated excision. Genesis 28:147‐155.
  Rajewsky, K., Gu, H., Kühn, R., Betz, U.A., Müller, W., Roes, J., and Schwenk, F. 1996. Conditional gene targeting. J. Clin. Invest. 98:600‐603.
  Rawlins, E.L., Clark, C.P., Xue, Y., and Hogan, B.L. 2009. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136:3741‐3745.
  Rickert, R.C., Roes, J., and Rajewsky, K.B. 1997. Lymphocyte‐specific, Cre‐mediated mutagenesis in mice. Nucleic Acids Res. 25:1317‐1318.
  Rodriguez, C.I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A.F., and Dymecki, S.M. 2000. High‐efficiency deleter mice show that FLPe is an alternative to Cre‐loxP. Nat. Genet. 25:139‐140.
  Rohlmann, A., Gotthardt, M., Willnow, T.E., Hammer, R.E., and Herz, J. 1996. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat. Biotechnol. 14:1562‐1565.
  Rubtsov, Y.P., Rasmussen, J.P., Chi, E.Y., Fontenot, J., Castelli, L., Ye, X., Treuting, P., Siewe, L., Roers, A., Henderson, W.R. Jr., Muller, W., and Rudensky, A.Y. 2008. Regulatory T cell‐derived interleukin‐10 limits inflammation at environmental interfaces. Immunity 28:546‐558.
  Rubtsov, Y.P., Niec, R.E., Josefowicz, S., Li, L., Darce, J., Mathis, D., Benoist, C., and Rudensky, A.Y. 2010. Stability of the regulatory T cell lineage in vivo. Science 329:1667‐1671.
  Ryan, M.D., King, A.M., and Thomas, G.P. 1991. Cleavage of foot‐and‐mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J. Gen. Virol. 72:2727‐2732.
  Sauer, B. 1998. Inducible gene targeting in mice using the Cre/lox system. Methods 14:381‐392.
  Sauer, B. and Henderson, N. 1998. Site‐specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. U.S.A. 85:5166‐5170.
  Schwenk, F., Baron, U., and Rajewsky, K. 1995. A cre‐transgenic mouse strain for the ubiquitous deletion of loxP‐flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23:5080‐5081.
  Seibler, J., Zevnik, B., Küter‐Luks, B., Andreas, S., Kern, H., Hennek, T., Rode, A., Heimann, C., Faust, N., Kauselmann, G., Schoor, M., Jaenisch, R., Rajewsky, K., Kühn, R., and Schwenk, F. 2003. Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31:e12.
  Shaikh, A.C. and Sadowski, P.D. 2000. Chimeras of the Flp and Cre recombinases: Tests of the mode of cleavage by Flp and Cre. J. Mol. Biol. 302:27‐48.
  Shimshek, D.R., Kim, J., Hübner, M.R., Spergel, D.J., Buchholz, F., Casanova, E., Stewart, A.F., Seeburg, P.H., and Sprengel, R. 2002. Codon‐improved Cre recombinase (iCre) expression in the mouse. Genesis 32:19‐26.
  Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21:70‐71.
  Soukharev, S., Miller, J.L., and Sauer, B. 1999. Segmental genomic replacement in embryonic stem cells by double lox targeting. Nucleic Acids Res. 27:e21.
  Srinivas, S., Watanabe, T., Lin, C.S., William, C.M., Tanabe, Y., Jessell, T.M., and Costantini, F. 2001. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1:4.
  Stec, D.E., Davisson, R.L., Haskell, R.E., Davidson, B.L., and Sigmund, C.D. 1999. Efficient liver‐specific deletion of a floxed human angiotensinogen transgene by adenoviral delivery of Cre recombinase in vivo. J. Biol. Chem. 274:21285‐21290.
  Szymczak, A.L. and Vignali, D.A. 2005. Development of 2A peptide‐based strategies in the design of multicistronic vectors. Exp. Opin. Biol. Ther. 5:627‐638.
  Szymczak, A.L., Workman, C.J., Wang, Y., Vignali, K.M., Dilioglou, S., Vanin, E.F., and Vignali, D.A. 2004. Correction of multi‐gene deficiency in vivo using a single ‘self‐cleaving' 2A peptide‐based retroviral vector. Nat. Biotechnol. 22:589‐594.
  Thyagarajan, B., Guimaraes, M.J., Groth, A.C., and Calos, M.P. 2000. Mammalian genomes contain active recombinase recognition sites. Gene 244:47‐54.
  Thyagarajan, B., Olivares, E.C., Hollis, R.P., Ginsburg, D.S., and Calos, M.P. 2001. Site‐specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell Biol. 21:3926‐3934.
  van der Weyden, L., Adams, D.J., and Bradley, A. 2002. Tools for targeted manipulation of the mouse genome. Physiol. Genomics 11:133‐164.
  Wadia, J.S., Stan, R.V., and Dowdy, S.F. 2004. Transducible TAT‐HA fusogenic peptide enhances escape of TAT‐fusion proteins after lipid raft macropinocytosis. Nat. Med. 10:310‐315.
  Wang, Q., Strong, J., and Killeen, N. 2001. Homeostatic competition among T cells revealed by conditional inactivation of the mouse Cd4 gene. J. Exp. Med. 194:1721‐1730.
  Wang, Y., Krushel, L.A., and Edelman, G.M. 1996. Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene. Proc. Natl. Acad. Sci. U.S.A. 93:3932‐3936.
  Xu, Z., Lee, N.C., Dafhnis‐Calas, F., Malla, S., Smith, M.C., and Brown, M.R. 2008. Site‐specific recombination in Schizosaccharomyces pombe and systematic assembly of a 400 kb transgene array in mammalian cells using the integrase of Streptomyces phage phiBT1. Nucleic Acids Res. 36:e9.
  Yagi, R., Junttlia, I.S., Wei, G., Urbahn, J.F. Jr., Zhao, K., Paul, W.E., and Zhu, J. 2010. The transcription factor GATA3 actively represses RUNX3 protein‐regulated production of interferon‐gamma. Immunity 32:507‐517.
  Zhu, J., Min, B., Hu‐Li, J., Watson, C.J., Grinberg, A., Wang, Q., Killeen, N., Urban, J.F. Jr., Guo, L., and Paul, W.E. 2004. Conditional deletion of Gata3 shows its essential function in T(H)1‐T(H)2 responses. Nat. Immunol. 5:1157‐1165.
  Zhumabekov, T., Corbella, P., Tolaini, M., and Kioussis, D. 1995. Improved version of a human CD2 minigene based vector for T cell‐specific expression in transgenic mice. J. Immunol. Methods 185:133‐140.
PDF or HTML at Wiley Online Library