Detecting Tyrosine‐Phosphorylated Proteins by Western Blot Analysis

Sansana Sawasdikosol1

1 Mount Sinai School of Medicine, New York, New York
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 11.3
DOI:  10.1002/0471142735.im1103s89
Online Posting Date:  April, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The development of monoclonal antibodies (mAbs) that recognize nearly all of the phosphorylated tyrosine residues, irrespective of the surrounding sequences, enables researchers to detect the phosphorylation state of proteins through the use of anti‐phosphotyrosine western blotting. The availability of this simple, reliable, nonradioactive and yet sensitive method created a boom in signal transduction research. While the methodology of how to perform an anti‐phosphotyrosine western blot remains unchanged since the procedure became widely used in the early part of 1990s, steady improvements in reagents and detection technologies have allowed researchers to detect tyrosine phosphorylation quantitatively, at unprecedented sensitivity. In addition to the improvements in the western blot–based systems, powerful new phosphotyrosine detection platforms, based on proteomic technologies, are emerging rapidly. This unit will describe in detail the steps needed to perform the standard anti‐phosphotyrosine western blot analysis. Curr. Protoc. Immunol. 89:11.3.1‐11.3.11. © 2010 by John Wiley & Sons, Inc.

Keywords: tyrosine‐phosphorylated proteins; tyrosine kinase substrates; anti‐phosphotyrosine western blot

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Jurkat T cells (American Type Culture Collection [ATTC])
  • RPMI‐1640 medium (Mediatech) and fetal bovine serum (Life Technologies)
  • RPMI 1640 medium (Mediatech)
  • Anti‐CD3ɛ, clone OKT3.14 (eBioscience)
  • Rabbit anti‐mouse Ig, unlabeled (Southern Biotech)
  • 1× lysis buffer, ice‐cold (see recipe)
  • 2× SDS sample buffer (see recipe in unit 8.4)
  • Immobilon‐P Polyvinylidene Fluoride (PVDF) membrane, 0.45‐µm pore size (Millipore)
  • 4% BSA PVDF blocking buffer (see recipe)
  • Tris‐buffered saline containing Tween 20 (TBST; see recipe)
  • 0.02% sodium azide (NaN 3)
  • Unlabeled and HRP‐conjugated anti‐phosphotyrosine antibody, clone 4G10 (Millipore Corporation, Billerica, MA)
  • HRP‐conjugated, sheep anti‐mouse Ig (GE Healthcare)
  • Enhanced chemiluminescence (ECL) reagents, Western Lightning (Perkin Elmer Life Sciences)
  • PVDF membrane stripping solution (see recipe)
  • Infrared dye‐conjugated secondary antibody (Li‐Cor Biosciences), optional
  • 75‐ or 175‐cm2 flasks
  • Centrifuge
  • Vacuum apparatus
  • 15‐ml conical centrifuge tubes
  • 1.5‐ml microcentrifuge tubes
  • Vortex
  • 37°C water bath
  • Microcentrifuge
  • Rocker platform or orbital rotating platform, 4°C and room temperature
  • Small plastic container with a flat bottom large enough to allow the membrane to lie flat without touching the side walls of the container
  • Forceps
  • Paper towels
  • Saran Wrap plastic sheet
  • Autoradiographic cassette
  • Scientific imaging film (GE Healthcare's Hyperfilm ECL or Kodak's X‐OMAT)
  • Temperature‐controlled incubator capable of maintaining 50°C, (Boekel Scientific)
  • CCD camera‐equipped imaging device to detect chemiluminescence signals (such as GE Healthcare's ImageQuant RT ECL or Alpha Innotech's FluorChem HD2), optional
  • Odyssey Near Infrared imager (Li‐Cor Biosciences), optional
  • Additional reagents and equipment for SDS‐PAGE (unit 8.4) and the transfer of electrophoretically resolved proteins onto PVDF membrane (unit 8.10)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Blaydes, J.P., Vojtesek, B., Bloomberg, G.B., and Hupp, T.R. 2000. The development and use of phospho‐specific antibodies to study protein phosphorylation. Methods Mol. Biol. 99:177‐189.
   Brunswick, M., Samelson, L.E., and Mond, J.J. 1991. Surface immunoglobulin crosslinking activates a tyrosine kinase pathway in B cells that is independent of protein kinase. Proc. Natl. Acad. Sci. U.S.A. 88:1311‐1314.
   Ding, S.J., Qian, W.J., and Smith, R.D. 2007. Quantitative proteomic approaches for studying phosphotyrosine signaling. Exp. Rev. Proteomics 4:13‐23.
   Gold, M.R., Law, D.A., and DeFranco, A.L. 1990. Stimulation of protein tyrosine phosphorylation by the B‐lymphocyte antigen receptor. Nature 345:810‐813.
   Horak, I.D., Gress, R.E., Lucas, P.J., Horak, E.M., Waldmann, T.A., and Bolen, J.B. 1991. T‐lymphocyte interleukin 2‐dependent tyrosine protein kinase signal transduction involves the activation of p56lck. Proc. Natl. Acad. Sci. U.S.A. 88:1996‐2000.
   Hsueh, R.C. and Scheuermann, R.H. 2000. Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv. Immunol. 75:283‐316.
   Hunter, T. 1998. The role of tyrosine phosphorylation in cell growth and disease. Harvey Lectures 94:81‐119.
   Kanakura, Y., Druker, B., Cannistra, S.A., Furukawa, Y., Torimoto, Y., and Griffin, J.D. 1990. Signal transduction of the human granulocyte‐macrophage colony‐stimulating factor and interleukin‐3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic proteins. Blood 76:706‐715.
   Klausner, R.D. and Samelson, L.E. 1991. T cell antigen receptor activation pathways: The tyrosine kinase connection. Cell 64:875‐878.
   Korf, U., Henjes, F., Schmidt, C., Tresch, A., Mannsperger, H., Lobke, C., Beissbarth, T., and Poustka, A. 2008. Antibody microarrays as an experimental platform for the analysis of signal transduction networks. Adv. Biochem. Eng. Biotechnol. 110:153‐175.
   Machida, K., Mayer, B.J., and Nollau, P. 2003. Profiling the global tyrosine phosphorylation state. Mol. Cell Proteomics 2:215‐233.
   Machida, K., Thompson, C.M., Dierck, K., Jablonowski, K., Karkkainen, S., Liu, B., Zhang, H., Nash, P.D., Newman, D.K., Nollau, P., Pawson, T., Renkema, G.H., Saksela, K., Schiller, M.R., Shin, D.G., and Mayer, B.J. 2007. High‐throughput phosphotyrosine profiling using SH2 domains. Mol. Cell 26:899‐915.
   Mahlknecht, U., Ottmann, O.G., and Hoelzer, D. 2001. Far‐Western based protein‐protein interaction screening of high‐density protein filter arrays. J. Biotechnol. 88:89‐94.
   Mandell, J.W. 2003. Phosphorylation state‐specific antibodies: Applications in investigative and diagnostic pathology. Am. J. Pathol. 163:1687‐1698.
   Mustelin, T., Abraham, R.T., Rudd, C.E., Alonso, A., and Merlo, J.J. 2002. Protein tyrosine phosphorylation in T cell signaling. Front Biosci. 7:d918‐d969.
   Saerens, D., Ghassabeh, G.H., and Muyldermans, S. 2008. Antibody technology in proteomics. Brief. Funct. Genomic Proteomic 7:275‐282.
   Tietzel, I. and Mosser, D.M. 2002. The modulation of macrophage activation by tyrosine phosphorylation. Front Biosci. 7:d1494‐d1502.
   Zhang, Y., Wolf‐Yadlin, A., and White, F.M. 2007. Quantitative proteomic analysis of phosphotyrosine‐mediated cellular signaling networks. Methods Mol. Biol. 359:203‐212.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library