Immunophenotyping of T Cell Subpopulations in HIV Disease

Pratip K. Chattopadhyay1, Mario Roederer1

1 National Institutes of Health, Bethesda, Maryland
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 12.12
DOI:  10.1002/0471142735.im1212s65
Online Posting Date:  March, 2005
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit illustrates the challenges associated with measurements of T cell subpopulations, and describes how those challenges can be overcome by using polychromatic (5+ color) approaches to flow cytometry. Such approaches are immensely powerful and directly applicable to studies of T cell biology in HIV disease; however, their development requires careful consideration of the antibodies and fluorochromes employed, as discussed here. Furthermore, factors generally known to influence T cell counts can also govern the success or failure of polychromatic experiments; therefore, these factors are reviewed and provide recommendations for minimizing their influence on polychromatic measurements of T cell subsets.

Keywords: Polychromatic flow cytometry; T cell subsets; immunophenotyping; CD4 count

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • The Role of CD4+ and CD8+ Subpopulations in T Cell Biology
  • Challenges Associated with Identification of T Cell Subpopulations: The Need for Polychromatic (5+ Color) Immunophenotyping
  • Strategies for Developing Polychromatic Flow Cytometry Technology
  • Application of Polychromatic Flow Cytometry
  • Lessons Learned from Enumeration of CD4+ T Cells
  • Conclusions
  • Acknowledgements
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Aandahl, E.M., Sandberg, J.K., Beckerman, K.P., Tasken, K., Moretto, W.J., and Nixon, D.F. 2003. CD7 is a differentiation marker that identifies multiple CD8 T cell effector subsets. J. Immunol. 170:2349‐2355.
   Appay, V., Dunbar, P.R., Callan, M., Klenerman, P., Gillespie, G.M., Papagno, L., Ogg, G.S., King, A., Lechner, F., Spina, C.A., Little, S., Havlir, D.V., Richman, D.D., Gruener, N., Pape, G., Waters, A., Easterbrook, P., Salio, M., Cerundolo, V., McMichael, A.J., and Rowland‐Jones, S.L. 2002a. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8:379‐385.
   Appay, V., Papagno, L., Spina, C.A., Hansasuta, P., King, A., Jones, L., Ogg, G.S., Little, S., McMichael, A.J., Richman, D.D., and Rowland‐Jones, S.L. 2002b. Dynamics of T cell responses in HIV infection. J. Immunol. 168:3660‐3666.
   Arstila, T.P., Casrouge, A., Baron, V., Even, J., Kanellopoulos, J., and Kourilsky, P. 1999. A direct estimate of the human alphabeta T cell receptor diversity. Science 286:958‐961.
   Baerlocher, G.M. and Lansdorp, P.M. 2003. Telomere length measurements in leukocyte subsets by automated multicolor flow‐FISH. Cytometry 55A:1‐6.
   Baron, V., Bouneaud, C., Cumano, A., Lim, A., Arstila, T.P., Kourilsky, P., Ferradini, L., and Pannetier, C. 2003. The repertoires of circulating human CD8(+) central and effector memory T cell subsets are largely distinct. Immunity 18:193‐204.
   Berard, M. and Tough, D.F. 2002. Qualitative differences between naive and memory T cells. Immunology 106:127‐138.
   Berhanu, D., Mortari, F., De Rosa, S.C., and Roederer, M. 2003. Optimized lymphocyte isolation methods for analysis of chemokine receptor expression. J. Immunol. Methods 279:199‐207.
   Brenchley, J.M., Hill, B.J., Ambrozak, D.R., Price, D.A., Guenaga, F.J., Casazza, J.P., Kuruppu, J., Yazdani, J., Migueles, S.A., Connors, M., Roederer, M., Douek, D.C., and Koup, R.A. 2004. T‐cell subsets that harbor human immunodeficiency virus (HIV) in vivo: Implications for HIV pathogenesis. J. Virol. 78:1160‐1168.
   Clement, L.T. 1992. Isoforms of the CD45 common leukocyte antigen family: Markers for human T‐cell differentiation. J. Clin. Immunol. 12:1‐10.
   Croft, M., Duncan, D.D., and Swain, S.L. 1992. Response of naive antigen‐specific CD4+ T cells in vitro: Characteristics and antigen‐presenting cell requirements. J. Exp. Med. 176:1431‐1437.
   De Rosa, S.C., Herzenberg, L.A., Herzenberg, L.A., and Roederer, M. 2001. 11‐color, 13‐parameter flow cytometry: Identification of human naive T cells by phenotype, function, and T‐cell receptor diversity. Nat. Med. 7:245‐248.
   Douek, D.C. and Koup, R.A. 2000. Evidence for thymic function in the elderly. Vaccine 18:1638‐1641.
   Douek, D.C., McFarland, R.D., Keiser, P.H., Gage, E.A., Massey, J.M., Haynes, B.F., Polis, M.A., Haase, A.T., Feinberg, M.B., Sullivan, J.L., Jamieson, B.D., Zack, J.A., Picker, L.J., and Koup, R.A. 1998. Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690‐695.
   Douek, D.C., Brenchley, J.M., Betts, M.R., Ambrozak, D.R., Hill, B.J., Okamoto, Y., Casazza, J.P., Kuruppu, J., Kunstman, K., Wolinsky, S., Grossman, Z., Dybul, M., Oxenius, A., Price, D.A., Connors, M., and Koup, R.A. 2002. HIV preferentially infects HIV‐specific CD4+ T cells. Nature 417:95‐98.
   Gamadia, L.E., Remmerswaal, E.B., Weel, J.F., Bemelman, F., van Lier, R.A., and ten Berge, I.J. 2003. Primary immune responses to human CMV: A critical role for IFN‐gamma‐producing CD4+ T cells in protection against CMV disease. Blood 101:2686‐2692.
   Giorgi, J.V., Cheng, H.L., Margolick, J.B., Bauer, K.D., Ferbas, J., Waxdal, M., Schmid, I., Hultin, L.E., Jackson, A.L., Park, L., et al. 1990. Quality control in the flow cytometric measurement of T‐lymphocyte subsets: The multicenter AIDS cohort study experience. The Multicenter AIDS Cohort Study Group. Clin. Immunol. Immunopathol. 55:173‐186.
   Green, W.F. and Stelzer, G.T. 1998. Interlaboratory comparison of flow cytometric lymphocyte phenotyping analysis: Implications for standardization. Cytometry Suppl. 3:23‐28.
   Gupta, S. and Good, R.A. 1981. Subpopulations of human T lymphocytes: Laboratory and clinical studies. Immunol. Rev. 56:89‐114.
   Hamann, D., Baars, P.A., Rep, M.H., Hooibrink, B., Kerkhof‐Garde, S.R., Klein, M.R., and van Lier, R.A. 1997. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186:1407‐1418.
   Hamann, D., Roos, M.T., and van Lier, R.A. 1999. Faces and phases of human CD8 T‐cell development. Immunol. Today 20:177‐180.
   Hatzakis, A., Touloumi, G., Karanicolas, R., Karafoulidou, A., Mandalaki, T., Anastassopoulou, C., Zhang, L., Goedert, J.J., Ho, D.D., and Kostrikis, L.G. 2000. Effect of recent thymic emigrants on progression of HIV‐1 disease. Lancet 355:599‐604.
   Hazenberg, M.D., Otto, S.A., van Benthem, B.H., Roos, M.T., Coutinho, R.A., Lange, J.M., Hamann, D., Prins, M., and Miedema, F. 2003. Persistent immune activation in HIV‐1 infection is associated with progression to AIDS. AIDS 17:1881‐1888.
   Helbert, M. and Breuer, J. 2000. Monitoring patients with HIV disease. J. Clin. Pathol. 53:266‐272.
   Herzenberg, L.A., Parks, D., Sahaf, B., Perez, O., Roederer, M., and Herzenberg, L.A. 2002. The history and future of the fluorescence activated cell sorter and flow cytometry: A view from Stanford. Clin. Chem. 48:1819‐1827.
   Kaech, S.M., Wherry, E.J., and Ahmed, R. 2002. Effector and memory T‐cell differentiation: Implications for vaccine development. Nat. Rev. Immunol. 2:251‐262.
   Kaslow, R.A., Phair, J.P., Friedman, H.B., Lyter, D., Solomon, R.E., Dudley, J., Polk, B.F., and Blackwelder, W. 1987. Infection with the human immunodeficiency virus: Clinical manifestations and their relationship to immune deficiency. A report from the Multicenter AIDS Cohort Study. Ann. Intern. Med. 107:474‐480.
   Kolte, L., Dreves, A.M., Ersboll, A.K., Strandberg, C., Jeppesen, D.L., Nielsen, J.O., Ryder, L.P., and Nielsen, S.D. 2002a. Association between larger thymic size and higher thymic output in human immunodeficiency virus‐infected patients receiving highly active antiretroviral therapy. J. Infect. Dis. 185:1578‐1585.
   Kolte, L., Strandberg, C., Dreves, A.M., Ersboll, A.K., Jeppesen, D.L., Ryder, L.P., and Nielsen, S.D. 2002b. Thymic involvement in immune recovery during antiretroviral treatment of HIV infection in adults; comparison of CT and sonographic findings. Scand. J. Infect. Dis. 34:668‐672.
   Lyerly, H.K. 2003. Quantitating cellular immune responses to cancer vaccines. Semin. Oncol. 30:9‐16.
   Malone, J.L., Simms, T.E., Gray, G.C., Wagner, K.F., Burge, J.R., and Burke, D.S. 1990. Sources of variability in repeated T‐helper lymphocyte counts from human immunodeficiency virus type 1‐infected patients: Total lymphocyte count fluctuations and diurnal cycle are important. J. Acquir. Immune Defic. Syndr. 3:144‐151.
   Margolick, J.B., Munoz, A., Donnenberg, A.D., Park, L.P., Galai, N., Giorgi, J.V., O'Gorman, M.R., and Ferbas, J. 1995. Failure of T‐cell homeostasis preceding AIDS in HIV‐1 infection. The Multicenter AIDS Cohort Study. Nat. Med. 1:674‐680.
   McCune, J.M., Hanley, M.B., Cesar, D., Halvorsen, R., Hoh, R., Schmidt, D., Wieder, E., Deeks, S., Siler, S., Neese, R., and Hellerstein, M. 2000. Factors influencing T‐cell turnover in HIV‐1‐seropositive patients. J. Clin. Invest. 105:R1‐R8.
   Paxton, H., Kidd, P., Landay, A., Giorgi, J., Flomenberg, N., Walker, E., Valentine, F., Fahey, J., and Gelman, R. 1989. Results of the flow cytometry ACTG quality control program: Analysis and findings. Clin. Immunol. Immunopathol. 52:68‐84.
   Perfetto, S.P., Chattopadhyay, P.K., and Roederer, M. 2004. Seventeen‐colour flow cytometry: Unravelling the immune system. Nat. Rev. Immunol. 4:648‐655.
   Picker, L.J., Treer, J.R., Ferguson‐Darnell, B., Collins, P.A., Bergstresser, P.R., and Terstappen, L.W. 1993a. Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte‐associated antigen, a tissue‐selective homing receptor for skin‐homing T cells. J. Immunol. 150:1122‐1136.
   Picker, L.J., Treer, J.R., Ferguson‐Darnell, B., Collins, P.A., Buck, D., and Terstappen, L.W. 1993b. Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L‐selectin on T cells during the virgin to memory cell transition. J. Immunol. 150:1105‐1121.
   Rabin, R.L., Roederer, M., Maldonado, Y., Petru, A., Herzenberg, L.A., and Herzenberg, L.A. 1995. Altered representation of naive and memory CD8 T cell subsets in HIV‐infected children. J. Clin. Invest. 95:2054‐2060.
   Reimann, K.A., Chernoff, M., Wilkening, C.L., Nickerson, C.E., and Landay, A.L. 2000a. Preservation of lymphocyte immunophenotype and proliferative responses in cryopreserved peripheral blood mononuclear cells from human immunodeficiency virus type 1‐infected donors: Implications for multicenter clinical trials. The ACTG Immunology Advanced Technology Laboratories. Clin. Diagn. Lab. Immunol. 7:352‐359.
   Reimann, K.A., O'Gorman, M.R., Spritzler, J., Wilkening, C.L., Sabath, D.E., Helm, K., and Campbell, D.E. 2000b. Multisite comparison of CD4 and CD8 T‐lymphocyte counting by single‐ versus multiple‐platform methodologies: Evaluation of Beckman Coulter flow‐count fluorospheres and the tetraONE system. The NIAID DAIDS New Technologies Evaluation Group. Clin. Diagn. Lab. Immunol. 7:344‐351.
   Renzi, P. and Ginns, L.C. 1987. Analysis of T cell subsets in normal adults. Comparison of whole blood lysis technique to Ficoll‐Hypaque separation by flow cytometry. J. Immunol. Methods 98:53‐56.
   Roederer, M. 2001. Spectral compensation for flow cytometry: Visualization artifacts, limitations, and caveats. Cytometry 45:194‐205.
   Roederer, M., Dubs, J.G., Anderson, M.T., Raju, P.A., Herzenberg, L.A., and Herzenberg, L.A. 1995. CD8 naive T cell counts decrease progressively in HIV‐infected adults. J. Clin. Invest. 95:2061‐2066.
   Roederer, M., De Rosa, S.C., Watanabe, N., and Herzenberg, L.A. 1997. Dynamics of fine T‐cell subsets during HIV disease and after thymic ablation by mediastinal irradiation. Semin. Immunol. 9:389‐396.
   Roos, M.T., van Lier, R.A., Hamann, D., Knol, G.J., Verhoofstad, I., van Baarle, D., Miedema, F., and Schellekens, P.T. 2000. Changes in the composition of circulating CD8+ T cell subsets during acute epstein‐barr and human immunodeficiency virus infections in humans. J. Infect. Dis. 182:451‐458.
   Royce, R.A. and Winkelstein, W., Jr. 1990. HIV infection, cigarette smoking and CD4+ T‐lymphocyte counts: Preliminary results from the San Francisco Men's Health Study. AIDS 4:327‐333.
   Rufer, N., Zippelius, A., Batard, P., Pittet, M.J., Kurth, I., Corthesy, P., Cerottini, J.C., Leyvraz, S., Roosnek, E., Nabholz, M., and Romero, P. 2003. Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 102:1779‐1787.
   Sachsenberg, N., Perelson, A.S., Yerly, S., Schockmel, G.A., Leduc, D., Hirschel, B., and Perrin, L. 1998. Turnover of CD4+ and CD8+ T lymphocytes in HIV‐1 infection as measured by Ki‐67 antigen. J. Exp. Med. 187:1295‐1303.
   Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708‐712.
   Sallusto, F., Mackay, C.R., and Lanzavecchia, A. 2000. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18:593‐620.
   Santana, M.A. and Rosenstein, Y. 2003. What it takes to become an effector T cell: The process, the cells involved, and the mechanisms. J. Cell. Physiol. 195:392‐401.
   Schnittman, S.M., Lane, H.C., Greenhouse, J., Justement, J.S., Baseler, M., and Fauci, A.S. 1990. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: Evidence for a role in the selective T‐cell functional defects observed in infected individuals. Proc. Natl. Acad. Sci. U.S.A 87:6058‐6062.
   Schnizlein‐Bick, C.T., Mandy, F.F., O'Gorman, M.R., Paxton, H., Nicholson, J.K., Hultin, L.E., Gelman, R.S., Wilkening, C.L., and Livnat, D. 2002. Use of CD45 gating in three and four‐color flow cytometric immunophenotyping: Guideline from the National Institute of Allergy and Infectious Diseases, Division of AIDS. Cytometry 50:46‐52.
   Seder, R.A. and Ahmed, R. 2003. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4:835‐842.
   Siliciano, J.D., Kajdas, J., Finzi, D., Quinn, T.C., Chadwick, K., Margolick, J.B., Kovacs, C., Gange, S.J., and Siliciano, R.F. 2003. Long‐term follow‐up studies confirm the stability of the latent reservoir for HIV‐1 in resting CD4+ T cells. Nat. Med. 9:727‐728.
   Thimme, R., Oldach, D., Chang, K.M., Steiger, C., Ray, S.C., and Chisari, F.V. 2001. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J. Exp. Med. 194:1395‐1406.
   Tomiyama, H., Matsuda, T., and Takiguchi, M. 2002. Differentiation of human CD8(+) T cells from a memory to memory/effector phenotype. J. Immunol. 168:5538‐5550.
   Tussey, L., Speller, S., Gallimore, A., and Vessey, R. 2000. Functionally distinct CD8+ memory T cell subsets in persistent EBV infection are differentiated by migratory receptor expression. Eur. J. Immunol. 30:1823‐1829.
   Ullum, H., Palmo, J., Halkjaer‐Kristensen, J., Diamant, M., Klokker, M., Kruuse, A., LaPerriere, A., and Pedersen, B.K. 1994. The effect of acute exercise on lymphocyte subsets, natural killer cells, proliferative responses, and cytokines in HIV‐seropositive persons. J. Acquir. Immune Defic. Syndr. 7:1122‐1133.
   Unsoeld, H., Krautwald, S., Voehringer, D., Kunzendorf, U., and Pircher, H. 2002. Cutting edge: CCR7+ and CCR7− memory T‐cells do not differ in immediate effector function. J. Immunol. 169:638‐641.
   Urbani, S., Boni, C., Missale, G., Elia, G., Cavallo, C., Massari, M., Raimondo, G., and Ferrari, C. 2002. Virus‐specific CD8+ lymphocytes share the same effector‐memory phenotype but exhibit functional differences in acute hepatitis B and C. J. Virol. 76:12423‐12434.
   van Leeuwen, E.M., Gamadia, L.E., Baars, P.A., Remmerswaal, E.B., ten Berge, I.J., and van Lier, R.A. 2002. Proliferation requirements of cytomegalovirus‐specific, effector‐type human CD8+ T cells. J. Immunol. 169:5838‐5843.
   van Lier, R.A., ten Berge, I.J., and Gamadia, L.E. 2003. Human CD8(+) T‐cell differentiation in response to viruses. Nat. Rev. Immunol. 3:931‐939.
   Van Ziffle, J.A., Baerlocher, G.M., and Lansdorp, P.M. 2003. Telomere length in subpopulations of human hematopoietic cells. Stem Cells 21:654‐660.
   Waxdal, M.J., Monical, M.C., Fleisher, T.A., and Marti, G.E. 1988. Inter‐laboratory survey of lymphocyte immunophenotyping. Pathol. Immunopathol. Res. 7:345‐356.
   Wierenga, E.A., Snoek, M., Jansen, H.M., Bos, J.D., van Lier, R.A., and Kapsenberg, M.L. 1991. Human atopen‐specific types 1 and 2 T helper cell clones. J. Immunol. 147:2942‐2949.
   Zhang, D., Shankar, P., Xu, Z., Harnisch, B., Chen, G., Lange, C., Lee, S.J., Valdez, H., Lederman, M.M., and Lieberman, J. 2003. Most antiviral CD8 T cells during chronic viral infection do not express high levels of perforin and are not directly cytotoxic. Blood 101:226‐235.
   Zimmermann, C., Prevost‐Blondel, A., Blaser, C., and Pircher, H. 1999. Kinetics of the response of naive and memory CD8 T cells to antigen: Similarities and differences. Eur. J. Immunol. 29:284‐290.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library