Toll‐Like Receptors

Kiyoshi Takeda1, Shizuo Akira1

1 WPI Immunology Frontier Research Center, Osaka University, Osaka
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 14.12
DOI:  10.1002/0471142735.im1412s109
Online Posting Date:  April, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The mammalian Toll‐like receptor (TLR) family consists of 13 members, and recognizes specific patterns of microbial components, called pathogen‐associated molecular patterns (PAMPs). TLR‐dependent recognition of PAMPs leads to activation of the innate immune system, which subsequently leads to activation of antigen‐specific adaptive immunity. The TLR‐mediated signaling pathways consist of the MyD88‐dependent pathway and TRIF‐dependent pathway, both of which induce gene expression. This unit discusses mammalian TLRs (TLR1 to 13) that have an essential role in the innate immune recognition of microorganisms. Also discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs. © 2015 by John Wiley & Sons, Inc.

Keywords: innate immunity; Toll‐like receptors; TIR domain

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • TLR Signaling Pathways
  • TLR‐Independent Recognition of Microorganisms
  • Acknowledgements
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Akira, S. and Takeda, K. 2004. Toll‐like receptor signalling. Nat. Rev. Immunol. 4:499‐511.
  Akira, S., Uematsu, S., and Takeuchi, O. 2006. Pathogen recognition and innate immunity. Cell 124:783‐801.
  Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. 2001. Recognition of double‐stranded RNA and activation of NF‐kappaB by Toll‐like receptor 3. Nature 413:732‐738.
  Alexopoulou, L., Thomas, V., Schnare, M., Lobet, Y., Anguita, J., Schoen, R.T., Medzhitov, R., Fikrig, E., and Flavell, R.A. 2002. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1‐ and TLR2‐deficient mice. Nat. Med. 8:878‐884.
  Asea, A., Rehli, M., Kabingu, E., Boch, J.A., Bare, O., Auron, P.E., Stevenson, M.A., and Calderwood, S.K. 2002. Novel signal transduction pathway utilized by extracellular HSP70: Role of toll‐like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277:15028‐15034.
  Barrat, F.J., Meeker, T., Gregorio, J., Chan, J.H., Uematsu, S., Akira, S., Chang, B., Duramad, O., and Coffman, R.L. 2005. Nucleic acids of mammalian origin can act as endogenous ligands for Toll‐like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202:1131‐1139.
  Berland, R., Fernandez, L., Kari, E., Han, J.H., Lomakin, I., Akira, S., Wortis, H.H., Kearney, J.F., Ucci, A.A., and Imanishi‐Kari, T. 2006. Toll‐like receptor 7‐dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 25:429‐440.
  Boule, M.W., Broughton, C., Mackay, F., Akira, S., Marshak‐Rothstein, A., and Rifkin, I.R. 2004. Toll‐like receptor 9‐dependent and ‐independent dendritic cell activation by chromatin‐immunoglobulin G complexes. J. Exp. Med. 199:1631‐1640.
  Byrd‐Leifer, C.A., Block, E.F., Takeda, K., Akira, S., and Ding, A. 2001. The role of MyD88 and TLR4 in the LPS‐mimetic activity of Taxol. Eur. J. Immunol. 31:2448‐2457.
  Christensen, S.R., Shupe, J., Nickerson, K., Kashgarian, M., Flavell, R.A., and Shlomchik, M.J. 2006. Toll‐like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417‐428.
  da Silva Correia, J., Soldau, K., Christen, U., Tobias, P.S., and Ulevitch, R.J. 2001. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD‐2. J. Biol. Chem. 276:21129‐21135.
  Diebold, S.S., Kaiso, T., Hemmi, H., Akira, S., and Reise e Sousa, C. 2004. Innate antiviral responses by means of TLR7‐mediated recognition of single‐stranded RNA. Science 303:1529‐1531.
  Divanovic, S., Trompette, A., Atabani, S.F., Madan, R., Golenbock, D.T., Visintin, A., Finberg, R.W., Tarakhovsky, A., Vogel, S.N., Belkaid, Y., Kurt‐Jones, E.A., and Karp, C.L. 2005. Negative regulation of Toll‐like receptor 4 signaling by the Toll‐like receptor homolog RP105. Nat. Immunol. 6:571‐578.
  Edelmann, K.H., Richardson‐Burns, S., Alexopoulou, L., Tyler, K.L., Flavell, R.A., and Oldstone, M.B. 2004. Does Toll‐like receptor 3 play a biological role in virus infections? Virology 322:231‐238.
  Fitzgerald, K.A., Rowe, D.C., Barnes, B.J., Caffrey, D.R., Visintin, A., Latz, E., Monks, B., Pitha, P.M., and Golenbock, D.T. 2003. LPS‐TLR4 signaling to IRF‐3/7 and NF‐kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198:1043‐1055.
  Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J., and Madara, J.L. 2001. Cutting edge: Bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167:1882‐1885.
  Gorden, K.K., Qiu, X.X., Binsfeld, C.C., Vasilakos, J.P., and Alkan, S.S. 2006. Cutting edge: Activation of murine TLR8 by a combination of imidazoquinoline immune response modifiers and PolyT oligodeoxynucleotides. J. Immunol. 177:6584‐6587.
  Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C., Wang, G.G., Kamps, M.P., Raz, E., Wagner, H., Hacker, G., Mann, M., and Karin, M. 2006. Specificity in Toll‐like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204‐207.
  Hawn, T.R., Verbon, A., Lettinga, K.D., Zhao, L.P., Li, S.S., Laws, R.J., Skerrett, S.J., Beutler, B., Schroeder, L., Nachman, A., Ozinsky, A., Smith, K.D., and Aderem, A. 2003. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J. Exp. Med. 198:1563‐1572.
  Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M., and Aderem, A. 2001. The innate immune response to bacterial flagellin is mediated by Toll‐like receptor 5. Nature 410:1099‐1103.
  Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. 2004. Species‐specific recognition of single‐stranded RNA via Toll‐like receptors 7 and 8. Science 303:1526‐1529.
  Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. 2002. Small anti‐viral compounds activate immune cells via the TLR7 MyD88‐dependent signaling pathway. Nat. Immunol. 3:196‐200.
  Hemmi, H., Takeuchi, O., Sato, S., Yamamoto, M., Kaisho, T., Sanjo, H., Kawai, T., Hoshino, K., Takeda, K., and Akira, S. 2004. The roles of two IkappaB kinase‐related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199:1641‐1650.
  Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. 2000. A Toll‐like receptor recognizes bacterial DNA. Nature 408:740‐745.
  Hoebe, K., Du, X., Georgel, P., Janssen, E., Tabeta, K., Kim, S.O., Goode, J., Lin, P., Mann, N., Mudd, S., Crozat, K., Sovath, S., Han, J., and Beutler, B. 2003. Identification of Lps2 as a key transducer of MyD88‐independent TIR signalling. Nature 424:743‐748.
  Honda, K., Takaoka, A., and Taniguchi, T. 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25:349‐360.
  Honda, K., Ohba, Y., Yanai, H., Negishi, H., Mizutani, T., Takaoka, A., Taya, C., and Taniguchi, T. 2005. Spatiotemporal regulation of MyD88‐IRF‐7 signalling for robust type‐I interferon induction. Nature 434:1035‐1040.
  Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., Suzuki, N., Ohba, Y., Takaoka, A., Yeh, W.C., and Taniguchi, T. 2004. Role of a transductional‐transcriptional processor complex involving MyD88 and IRF‐7 in Toll‐like receptor signaling. Proc. Natl. Acad. Sci. U.S.A. 101:15416‐15421.
  Horng, T., Barton, G.M., Flavell, R.A., and Medzhitov, R. 2002. The adaptor molecule TIRAP provides signalling specificity for Toll‐like receptors. Nature 420:329‐333.
  Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S. 1999. Cutting edge: Toll‐like receptor 4 (TLR4)‐deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product. J. Immunol. 162:3749‐3752.
  Hoshino, K., Sugiyama, T., Matsumoto, M., Tanaka, T., Saito, M., Hemmi, H., Ohara, O., Akira, S., and Kaisho, T. 2006. IkappaB kinase‐alpha is critical for interferon‐alpha production induced by Toll‐like receptors 7 and 9. Nature 440:949‐953.
  Imler, J.L. and Hoffmann, J.A. 2001. Toll receptors in innate immunity. Trends Cell Biol. 11:304‐311.
  Jiang, Q., Akashi, S., Miyake, K., and Petty, H.R. 2000. Lipopolysaccharide induces physical proximity between CD14 and toll‐like receptor 4 (TLR4) prior to nuclear translocation of NF‐kappa B. J. Immunol. 165:3541‐3544.
  Kawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S. 1999. Unresponsiveness of MyD88‐deficient mice to endotoxin. Immunity 11:115‐122.
  Kawai, T., Sato, S., Ishii, K.J., Coban, C., Hemmi, H., Yamamoto, M., Terai, K., Matsuda, M., Inoue, J., Uematsu, S., Takeuchi, O., and Akira, S. 2004. Interferon‐alpha induction through Toll‐like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5:1061‐1068.
  Kawasaki, K., Akashi, S., Shimazu, R., Yoshida, T., Miyake, K., and Nishijima, M. 2000. Mouse toll‐like receptor 4.MD‐2 complex mediates lipopolysaccharide‐mimetic signal transduction by Taxol. J. Biol. Chem. 275:2251‐2254.
  Koblansky, A.A., Jankovic, D., Oh, H., Hieny, S., Sungnak, W., Mathur, R., Hayden, M.S., Akira, S., Sher, A., and Ghosh, S. 2013. Recognition of profilin by Toll‐like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 38:119‐130.
  Krug, A., Rothenfusser, S., Hornung, V., Jahrsdorfer, B., Blackwell, S., Ballas, Z.K., Endres, S., Krieg, A.M., and Hartmann, G. 2001. Identification of CpG oligonucleotide sequences with high induction of IFN‐alpha/beta in plasmacytoid dendritic cells. Eur. J. Immunol. 31:2154‐2163.
  Kurt‐Jones, E.A., Popova, L., Kwinn, L., Haynes, L.M., Jones, L.P., Tripp, R.A., Walsh, E.E., Freeman, M.W., Golenbock, D.T., Anderson, L.J., and Finberg, R.W. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol.1:398‐401.
  Lau, C.M., Broughton, C., Tabor, A.S., Akira, S., Flavell, R.A., Mamula, M.J., Christensen, S.R., Shlomchik, M.J., Viglianti, G.A., Rifkin, I.R., and Marshak‐Rothstein, A. 2005. RNA‐associated autoantigens activate B cells by combined B cell antigen receptor/Toll‐like receptor 7 engagement. J. Exp. Med. 202:1171‐1177.
  Leadbetter, E.A., Rifkin, I.R., Hohlbaum, A.M., Beaudette, B.C., Shlomchik, M.J., and Marshak‐Rothstein, A. 2002. Chromatin‐IgG complexes activate B cells by dual engagement of IgM and Toll‐like receptors. Nature 416:603‐607.
  Li, X.D. and Chen, Z.J. 2012. Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. eLife 1:e00102.
  Lund, J.M., Alexopoulou, L., Sato, A., Karow, M., Adams, N.C., Gale, N.W., Iwasaki, A., and Flavell, R.A. 2004. Recognition of single‐stranded RNA viruses by Toll‐like receptor 7. Proc. Natl. Acad. Sci. U.S.A. 101:5598‐5603.
  Marshak‐Rothstein, A. 2006. Toll‐like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6:823‐835.
  Mathur, R., Oh, H., Zhang, D., Park, S.G., Seo, J., Koblansky, A., Hayden, M.S., and Ghosh, S. 2012. A mouse model of Salmonella typhi infection. Cell 151:590‐602.
  McWhirter, S.M., Fitzgerald, K.A., Rosains, J., Rowe, D.C., Golenbock, D.T., and Maniatis, T. 2004. IFN‐regulatory factor 3‐dependent gene expression is defective in Tbk1‐deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 101:233‐238.
  Medzhitov, R., Preston‐Hurlburt, P., and Janeway, C.A. Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394‐397.
  Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., and Tschopp, J. 2004. RIP1 is an essential mediator of Toll‐like receptor 3‐induced NF‐kappa B activation. Nat. Immunol. 5:503‐507.
  Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., Kosugi, A., Kimoto, M., and Miyake, K. 2002. Essential role of MD‐2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3:667‐672.
  Oganesyan, G., Saha, S.K., Guo, B., He, J.Q., Shahangian, A., Zarnegar, B., Perry, A., and Cheng, G. 2006. Critical role of TRAF3 in the Toll‐like receptor‐dependent and ‐independent antiviral response. Nature 439:208‐211.
  Ohashi, K., Burkart, V., Flohe, S., and Kolb, H. 2000. Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll‐like receptor‐4 complex. J. Immunol. 164:558‐561.
  Okamura, Y., Watari, M., Jerud, E.S., Young, D.W., Ishizaka, S.T., Rose, J., Chow, J.C., and Strauss, J.F. 3rd. 2001. The extra domain A of fibronectin activates Toll‐like receptor 4. J. Biol. Chem. 276:10229‐10233.
  Oldenburg, M., Kruger, A., Ferstl, R., Kaufmann, A., Nees, G., Sigmund, A., Bathke, B., Lauterbach, H., Suter, M., Dreher, S., Koedel, U., Akira, S., Kawai, T., Buer, J., Wagner, H., Bauer, S., Hochrein, H., and Kirschning, C.J. 2012. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance‐forming modification. Science 337:1111‐1115.
  Ozinsky, A., Underhill, D.M., Fontenot, J.D., Hajjar, A.M., Smith, K.D., Wilson, C.B., Schroeder, L., and Aderem, A. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll‐like receptors. Proc. Natl. Acad. Sci. U.S.A. 97:13766‐13771.
  Peng, G., Guo, Z., Kiniwa, Y., Voo, K.S., Peng, W., Fu, T., Wang, D.Y., Li, Y., Wang, H.Y., and Wang, R.F. 2005. Toll‐like receptor 8‐mediated reversal of CD4+ regulatory T cell function. Science 309:1380‐1384.
  Perry, A.K., Chow, E.K., Goodnough, J.B., Yeh, W.C., and Cheng, G. 2004. Differential requirement for TANK‐binding kinase‐1 in type I interferon responses to toll‐like receptor activation and viral infection. J. Exp. Med. 199:1651‐1658.
  Pisitkun, P., Deane, J.A., Difilippantonio, M.J., Tarasenko, T., Satterthwaite, A.B., and Bolland, S. 2006. Autoreactive B cell responses to RNA‐related antigens due to TLR7 gene duplication. Science 312:1669‐1672.
  Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi‐Castagnoli, P., Layton, B., and Beutler, B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282:2085‐2088.
  Rassa, J.C., Meyers, J.L., Zhang, Y., Kudaravalli, R., and Ross, S.R. 2002. Murine retroviruses activate B cells via interaction with Toll‐like receptor 4. Proc. Natl. Acad. Sci. U.S.A. 99:2281‐2286.
  Schulz, O., Diebold, S.S., Chen, M., Naslund, T.I., Nolte, M.A., Alexopoulou, L., Azuma, Y.T., Flavell, R.A., Liljestrom, P., and Reis e Sousa, C. 2005. Toll‐like receptor 3 promotes cross‐priming to virus‐infected cells. Nature 433:887‐892.
  Sharma, S., tenOever, B.R., Grandvaux, N., Zhou, G.P., Lin, R., and Hiscott, J. 2003. Triggering the interferon antiviral response through an IKK‐related pathway. Science 300:1148‐1151.
  Smith, K.D., Andersen‐Nissen, E., Hayashi, F., Strobe, K., Bergman, M.A., Barrett, S.L., Cookson, B.T., and Aderem, A. 2003. Toll‐like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4:1247‐1253.
  Takeuchi, O., Kawai, T., Muhlradt, P.F., Morr, M., Radolf, J.D., Zychlinsky, A., Takeda, K., and Akira, S. 2001. Discrimination of bacterial lipoproteins by Toll‐like receptor 6. Int. Immunol. 13:933‐940.
  Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R.L., and Akira, S. 2002. Cutting edge: Role of Toll‐like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169:10‐14.
  Termeer, C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., Miyake, K., Freudenberg, M., Galanos, C., and Simon, J.C. 2002. Oligosaccharides of Hyaluronan activate dendritic cells via toll‐like receptor 4. J. Exp. Med. 195:99‐111.
  Uematsu, S., Sato, S., Yamamoto, M., Hirotani, T., Kato, H., Takeshita, F., Matsuda, M., Coban, C., Ishii, K.J., Kawai, T., Takeuchi, O., and Akira, S. 2005. Interleukin‐1 receptor‐associated kinase‐1 plays an essential role for Toll‐like receptor (TLR)7‐ and TLR9‐mediated interferon‐{alpha} induction. J. Exp. Med. 201:915‐923.
  Uematsu, S., Jang, M.H., Chevrier, N., Guo, Z., Kumagai, Y., Yamamoto, M., Kato, H., Sougawa, N., Matsui, H., Kuwata, H., Hemmi, H., Coban, C., Kawai, T., Ishii, K.J., Takeuchi, O., Miyasaka, M., Takeda, K., and Akira, S. 2006. Detection of pathogenic intestinal bacteria by Toll‐like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7:868‐874.
  Vabulas, R.M., Ahmad‐Nejad, P., Ghose, S., Kirschning, C.J., Issels, R.D., and Wagner, H. 2002. HSP70 as endogenous stimulus of the Toll/interleukin‐1 receptor signal pathway. J. Biol. Chem. 277:15107‐15112.
  Vabulas, R.M., Ahmad‐Nejad, P., da Costa, C., Miethke, T., Kirschning, C.J., Hacker, H., and Wagner, H. 2001. Endocytosed HSP60s use Toll‐like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin‐1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276:31332‐31339.
  Vollmer, J., Tluk, S., Schmitz, C., Hamm, S., Jurk, M., Forsbach, A., Akira, S., Kelly, K.M., Reeves, W.H., Bauer, S., and Krieg, A.M. 2005. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll‐like receptors 7 and 8. J. Exp. Med. 202:1575‐1585.
  Wang, T., Town, T., Alexopoulou, L., Anderson, J.F., Fikrig, E., and Flavell, R.A. 2004. Toll‐like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10:1366‐1373.
  Wyllie, D.H., Kiss‐Toth, E., Visintin, A., Smith, S.C., Boussouf, S., Segal, D.M., Duff, G.W., and Dower, S.K. 2000. Evidence for an accessory protein function for Toll‐like receptor 1 in anti‐bacterial responses. J. Immunol. 165:7125‐7132.
  Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K., and Akira, S. 2003b. TRAM is specifically involved in the Toll‐like receptor 4‐mediated MyD88‐independent signaling pathway. Nat. Immunol. 4:1144‐1150.
  Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. 2003a. Role of adaptor TRIF in the MyD88‐independent Toll‐like receptor signaling pathway. Science 301:640‐643.
  Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K., and Akira, S. 2002. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:324‐329.
  Yarovinsky, F., Zhang, D., Andersen, J.F., Bannenberg, G.L., Serhan, C.N., Hayden, M.S., Hieny, S., Sutterwala, F.S., Flavell, R.A., Ghosh, S., and Sher, A. 2005. TLR11 activation of dendritic cells by a protozoan profilin‐like protein. Science 308:1626‐1629.
  Zhang, D., Zhang, G., Hayden, M.S., Greenblatt, M.B., Bussey, C., Flavell, R.A., and Ghosh, S. 2004. A Toll‐like receptor that prevents infection by uropathogenic bacteria. Science 303:1522‐1526.
PDF or HTML at Wiley Online Library