Measurement of Macrophage Growth and Differentiation

Violeta Chitu1, Yee‐Guide Yeung1, Wenfeng Yu1, Sayan Nandi1, E. Richard Stanley1

1 Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 14.20
DOI:  10.1002/0471142735.im1420s92
Online Posting Date:  February, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit provides protocols for measuring the abundance and growth of macrophage precursors in agar cultures and the proliferation of isolated mature macrophages in vitro, by either direct cell counting or by DNA measurement. Methods for the immunohistochemical identification of macrophages and the determination of their proliferative status in vivo by immunofluorescence are also included. It also describes methods for characterization of macrophage differentiation through the immunofluorescence analysis of cell‐surface expression of CSF‐1 receptor. Curr. Protoc. Immunol. 92:14.20.1‐14.20.26. © 2011 by John Wiley & Sons, Inc.

Keywords: macrophages; microglia; myeloid; differentiation; CFU‐M assay; macrophage surface markers; CSF‐1 receptor

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Determination of Macrophage Precursor Numbers and Growth In Vitro
  • Basic Protocol 2: Measurement of Macrophage Proliferation In Vitro
  • Basic Protocol 3: Measurement of Macrophage Proliferation In Vitro Using 48‐Well Plates
  • Support Protocol 1: Construction of Calibration Curve for the Conversion of Fluorescence Measurement to Cell Number
  • Basic Protocol 4: Determination of Macrophage Numbers In Vivo
  • Basic Protocol 5: Determination of Microglial Proliferation In Vivo
  • Basic Protocol 6: Measurement of Cell‐Surface CSF‐1R with Biotinylated AFS98 for Characterization of Macrophage Differentiation
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Determination of Macrophage Precursor Numbers and Growth In Vitro

  • Bacto‐Agar (BD Difco)
  • 2× Complete α‐MEM (see recipe)
  • Human recombinant CSF‐1 (Pro‐Spec,
  • 1× α‐MEM (see recipe)
  • Mice, 6‐10 weeks old
  • 6% (v/v) acetic acid in 1× α‐MEM
  • 4% (w/v) paraformaldehyde in PBS (see appendix 2A for PBS)
  • 41°C water bath
  • 35‐ and 150‐mm diameter tissue culture plates (BD Bioscience)
  • 40‐mesh sieve
  • 100‐mm Petri dishes
  • 5‐ml syringes
  • 15‐ml conical centrifuge tubes (e.g., BD Falcon)
  • 22‐G needles
  • Inverted microscope equipped with a digital camera
  • ImageJ software (
  • Additional reagents and equipment for mouse euthanasia (unit 1.8), removing spleens and femurs from mice (units 1.9& 6.4, respectively), and counting viable cells using trypan blue dye exclusion ( 3.NaN)

Basic Protocol 2: Measurement of Macrophage Proliferation In Vitro

  • Mice for preparing primary macrophages (see protocol 1) or macrophage cell lines
  • Complete medium: 1× α‐MEM (see recipe) supplemented with 10% fetal bovine serum (FBS) and 120 ng/ml human recombinant CSF‐1 (Pro‐Spec,
  • Phosphate‐buffered saline (PBS; appendix 2A), ice‐cold
  • 0.005% (w/v) Zwittergent 3‐14 (Calbiochem) working solution in PBS, freshly prepared from 1% (w/v) stock in H 2O (store stock at 4°C) and kept on ice
  • Coulter Isoton counting fluid
  • 35‐mm diameter tissue culture dishes (BD Bioscience)
  • Inverted microscope
  • Coulter Counter
  • Computer running Microsoft Excel
  • Additional reagents and equipment for preparing primary macrophages from mice ( protocol 1) and counting viable cells using trypan blue dye exclusion ( appendix 3B)

Basic Protocol 3: Measurement of Macrophage Proliferation In Vitro Using 48‐Well Plates

  • Macrophage proliferation medium (see recipe)
  • Cells: primary macrophages (see discussions of protocol 2 in the Commentary) or CSF‐1‐dependent macrophage cell lines (e.g. BAC1.2F5, Morgan et al., )
  • 1 µg/ml 4′,6‐diamidino‐2‐phenylindole, dihydrochloride (DAPI); prepare fresh by diluting 1 mg/ml (1000×) stock solution (prepared in double‐distilled water; store in aliquots at –20°C) with staining buffer (see recipe for buffer)
  • 48‐well tissue culture plates
  • Fluorescence microplate reader with filters within ±5 nm of 358 nm for excitation and 461 nm for emission (PolarStar Optima, BMG Labtech)
  • 3‐ml syringes and 26‐G needles
  • Additional reagents and equipment for counting cells ( appendix 3A& appendix 3B)
CAUTION: DAPI is a known mutagen and should be handled with care. The dye must be disposed of safely and in accordance with applicable local regulations.NOTE: Excitation maximum for DAPI bound to dsDNA is 358 nm, and the emission maximum is 461 nm.

Support Protocol 1: Construction of Calibration Curve for the Conversion of Fluorescence Measurement to Cell Number

  • Cells: primary macrophages (see discussions of protocol 2 in the Commentary) or CSF‐1‐dependent macrophage cell lines (e.g. BAC1.2F5, Morgan et al., )
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • Macrophage proliferation medium (see recipe)
  • Cell scrapers
  • 15‐ml conical polypropylene tubes (e.g., BD Falcon)
  • Centrifuge
  • 1‐ml syringes and 26‐G needles
  • Additional reagents and equipment for counting cells ( appendix 3A& appendix 3B) and measurement of cell density of nonadherent cells ( protocol 3)

Basic Protocol 4: Determination of Macrophage Numbers In Vivo

  • Mouse paraffin‐embedded tissue sections (unit 21.4), 4‐µm thick, on slides
  • Histoclear (National Diagnostics)
  • 90%, 80%, and 70% ethanol (v/v) in double‐distilled water
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • Peroxidase quenching solution: 1% (v/v) hydrogen peroxide in 50% methanol/50% PBS; prepare fresh by diluting 30% hydrogen peroxide
  • Primary antibody 1% (v/v) rat anti‐F4/80 antiserum in PBS with 0.05% Tween‐20; 100 µl /slide
  • 0.05% Tween 20 in PBS (see appendix 2A for PBS)
  • Vectastain Peroxidase Rat IgG ABC kit (Vector Laboratories) including:
    • Blocking solution: 2% normal rabbit serum in PBS
    • Biotinylated secondary antibody
    • Reagent A
    • Reagent B
  • 3, 3′ diaminobenzidine (DAB) substrate kit for peroxidase (Vector Laboratories)
  • Harris Hematoxylin solution, modified, 7.5% (Sigma)
  • Bluing solution: ammonia water (0.5% v/v ammonium hydroxide, pH 8) or Scott's Tap Water Substitute for Histology (1% MgSO 4/0.067% NaHCO 3 in tap water)
  • Permount mounting medium (Fisher Scientific)
  • Slide holders and staining trays
  • Humidified chamber for slide incubation: e.g., Tupperware box containing moist paper towels
  • Glass coverslips 24 × 60 mm (Corning)
  • Light microscope
  • Additional reagents and equipment for immunohistochemical staining (unit 21.4)
NOTE: The F4/80 antigen is labile. Mice should be anesthetized and perfused with periodate‐lysine‐paraformaldehyde‐glutaraldehyde (PLPG) fixative (Cecchini et al., ) before dissection. Alternatively, immediately after being euthanized, mice can be injected with 5 ml PLPG in the left ventricle of the heart; however, this procedure may disrupt tissue architecture by breaking capillaries and other small blood vessels.NOTE: All procedures described below are performed at room temperature.

Basic Protocol 5: Determination of Microglial Proliferation In Vivo

  • Mice
  • 20 mg/ml BrdU in 154 mM NaCl/7 mM NaOH
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • 4% paraformaldehyde (PFA) in PBS, pH 7.4 (see appendix 2A for PBS)
  • 15% (w/v) and 30% (w/v) sucrose in PBS (see appendix 2A for PBS)
  • Embedding medium: Tissue‐Tek Cryo‐Optimal Cutting Temperature (O.C.T.) Compound (Fisher)
  • 2 N HCl
  • 0.1 M sodium borate, pH 8.5
  • 0.1% (w/v) sodium borohydride
  • Blocking solution (see recipe)
  • Primary antibodies: mouse IgG 1 anti‐BrdU (Novo Castra, http://www.leica‐‐systems/novocastra‐reagents/) and rabbit IgG anti‐Iba1 (Wako Pure Chemical Industries, Ltd.)
  • Staining buffer: 0.1% (w/v) BSA/0.05% (w/v)saponin in PBS (see appendix 2A for PBS)
  • Secondary antibodies: goat‐anti mouse IgG 1– FITC (1:200) and goat anti‐rabbit IgG‐ TRITC (1:200) (Southern Biotechnology Associates)
  • Antifade‐mounting medium with DAPI (Molecular Probes)
  • Dissecting equipment
  • Rotating shaker
  • Cryostat (see unit 21.4)
  • Embedding molds (see unit 21.4)
  • Staining dishes
  • Humidified dark chamber: opaque plastic box containing moistened paper towels
  • Glass coverslips, 24 × 60 mm (Corning)
  • Fluorescence microscope
  • Additional reagents and equipment for injection of mice (unit 1.6), euthanasia of mice (unit 1.8), and immunohistochemistry (unit 21.4)

Basic Protocol 6: Measurement of Cell‐Surface CSF‐1R with Biotinylated AFS98 for Characterization of Macrophage Differentiation

  • Monocytes/macrophages (see Background Information, discussion of protocol 2)
  • Phosphate‐buffered saline (PBS; appendix 2A), ice‐cold
  • Staining buffer: 1% (w/v) BSA (Sigma) in PBS (see appendix 2A for PBS), ice cold. (prepare fresh and filter sterilize through a 0.45 µm filter)
  • Mouse BD Fc blocking antibody (rat IgG 2b anti‐mouse CD16/CD32; eBioscience)
  • Biotinylated Rat IgG 2a anti‐CSF‐1R AFS98 (eBioscience)
  • Biotinylated Rat IgG2a Isotype Control (eBioscience)
  • Streptavidin‐PE (BD Pharmingen)
  • 0.01% (w/v) paraformaldehyde/1% NaN 3 in PBS pH 7.4 (see appendix 2A for PBS; optional)
  • 1% (w/v) NaN 3 in PBS, pH 7.4 (see appendix 2A for PBS; optional)
  • Centrifuge
  • 100‐µm mesh filter (optional)
  • Additional reagents and equipment for flow cytometry (Chapter 5)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Akashi, K., He, X., Chen, J., Iwasaki, H., Niu, C., Steenhard, B., Zhang, J., Haug, J., and Li, L. 2003. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101:383‐389.
   Andrews, R., Torok‐Storb, B., and Bernstein, I. 1983. Myeloid‐associated differentiation antigens on stem cells and their progeny identified by monoclonal antibodies. Blood 62:124‐132.
   Auffray, C., Sieweke, M., and Geissmann, F. 2009. Blood monocytes: Development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27:669‐692.
   Austyn, J. and Gordon, S. 1981. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur. J. Immunol. 11:805‐815.
   Bartelmez, S. and Stanley, E. 1985. Synergism between hemopoietic growth factors (HGFs) detected by their effects on cells bearing receptors for a lineage specific HGF: Assay of hemopoietin‐1. J. Cell Physiol. 122:370‐378.
   Bartelmez, S., Bradley, T., Bertoncello, I., Mochizuki, D., Tushinski, R., Stanley, E., Hapel, A., Young, I., Kriegler, A., and Hodgson, G. 1989. Interleukin 1 plus interleukin 3 plus colony‐stimulating factor 1 are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp. Hematol. 17:240‐245.
   Blaheta, R., Franz, M., Auth, M., Wenisch, H., and Markus, B. 1991. A rapid non‐radioactive fluorescence assay for the measurement of both cell number and proliferation. J. Immunol. Methods. 142:199‐206.
   Byrne, P., Guilbert, L., and Stanley, E. 1981. Distribution of cells bearing receptors for a colony‐stimulating factor (CSF‐1) in murine tissues. J. Cell. Biol. 91:848‐853.
   Cappella, P., Gasparri, F., Pulici, M., and Moll, J. 2008. Cell proliferation method: Click chemistry based on BrdU coupling for multiplex antibody staining. Curr. Protoc. Cytometry 45:7.34.1‐7.34.13.
   Cecchini, M., Dominguez, M., Mocci, S., Wetterwald, A., Felix, R., Fleisch, H., Chisholm, O., Hofstetter, W., Pollard, J., and Stanley, E. 1994. Role of colony stimulating factor‐1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120:1357‐1372.
   Chen, D., Lin, H., Stahl, P., and Stanley, E. 1979. Clonal growth in vitro by mouse Kupffer cells. Exp. Cell Res. 121:103‐109.
   Chilosi, M., Mombello, A., Montagna, L., Benedetti, A., Lestani, M., Semenzato, G., and Menestrina, F. 1990. Multimarker immunohistochemical staining of calgranulins, chloroacetate esterase, and S100 for simultaneous demonstration of inflammatory cells on paraffin sections. J. Histochem. Cytochem. 38:1669‐1675.
   Chitu, V., Ferguson, P., de Bruijn, R., Schlueter, A., Ochoa, L., Waldschmidt, T., Yeung, Y., and Stanley, E. 2009. Primed innate immunity leads to autoinflammatory disease in PSTPIP2‐deficient cmo mice. Blood 114:2497‐2505.
   Crook, K. and Hunt, S. 1996. Enrichment of early fetal‐liver hemopoietic stem cells of the rat using monoclonal antibodies against the transferrin receptor, Thy‐1, and MRC‐OX82. Dev. Immunol. 4:235‐246.
   de Jong, J., Voerman, J., van der Sluijs‐Gelling, A., Willemsen, R., and Ploemacher, R. 1994. A monoclonal antibody (ER‐HR3) against murine macrophages. I. Ontogeny, distribution and enzyme histochemical characterization of ER‐HR3‐positive cells. Cell Tissue Res. 275:567‐576.
   Dengler, W., Schulte, J., Berger, D., Mertelsmann, R., and Fiebig, H. 1995. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs 6:522‐532.
   Dijkstra, C., Döpp, E., Joling, P., and Kraal, G. 1985a. The heterogeneity of mononuclear phagocytes in lymphoid organs: Distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589‐599.
   Dijkstra, C., Van Vliet, E., Döpp, E., van der Lelij, A., and Kraal, G. 1985b. Marginal zone macrophages identified by a monoclonal antibody: Characterization of immuno‐ and enzyme‐histochemical properties and functional capacities. Immunology 55:23‐30.
   Draude, G., von Hundelshausen, P., Frankenberger, M., Ziegler‐Heitbrock, H., and Weber, C. 1999. Distinct scavenger receptor expression and function in the human CD14(+)/CD16(+) monocyte subset. Am. J. Physiol. 276:H1144‐1149.
   Dupasquier, M., Stoitzner, P., van Oudenaren, A., Romani, N., and Leenen, P. 2004. Macrophages and dendritic cells constitute a major subpopulation of cells in the mouse dermis. J. Invest. Dermatol. 123:876‐879.
   Ezquerra, A., Revilla, C., Alvarez, B., Perez, C., Alonso, F., and Dominguez, J. 2009. Porcine myelomonocytic markers and cell populations. Dev. Comp. Immunol. 33:284‐298.
   Ginhoux, F., Tacke, F., Angeli, V., Bogunovic, M., Loubeau, M., Dai, X.M., Stanley, E.R., Randolph, G.J., and Merad, M. 2006. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7:265‐273.
   Goebeler, M., Roth, J., Teigelkamp, S., and Sorg, C. 1994. The monoclonal antibody MAC387 detects an epitope on the calcium‐binding protein MRP14. J. Leukoc. Biol. 55:259‐261.
   Griffin, J., Linch, D., Sabbath, K., Larcom, P., and Schlossman, S. 1984. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk. Res. 8:521‐534.
   Hamann, J., Koning, N., Pouwels, W., Ulfman, L., van Eijk, M., Stacey, M., Lin, H., Gordon, S., and Kwakkenbos, M. 2007. EMR1, the human homolog of F4/80, is an eosinophil‐specific receptor. Eur. J. Immunol. 37:2797‐2802.
   Hartnell, A., Steel, J., Turley, H., Jones, M., Jackson, D., and Crocker, P. 2001. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97:288‐296.
   He, Y., Sadahiro, T., Noh, S., Wang, H., Todo, T., Chai, N., Klein, A., and Wu, G. 2009. Flow cytometric isolation and phenotypic characterization of two subsets of ED2 (CD163) hepatic macrophages in rats. Hepatol. Res. 39:1208‐1218.
   Hirasawa, T., Ohsawa, K., Imai, Y., Ondo, Y., Akazawa, C., Uchino, S., and Kohsaka, S. 2005. Visualization of microglia in living tissues using Iba1‐EGFP transgenic mice. J. Neurosci. Res. 81:357‐362.
   Högger, P., Dreier, J., Droste, A., Buck, F., and Sorg, C. 1998. Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid‐inducible member of the scavenger receptor cysteine‐rich family (CD163. J. Immunol. 161:1883‐1890.
   Horny, H., Ruck, P., Xiao, J., and Kaiserling, E. 1993. Immunoreactivity of normal and neoplastic human tissue mast cells with macrophage‐associated antibodies, with special reference to the recently developed monoclonal antibody PG‐M1. Hum. Pathol. 24:355‐358.
   Hume, D., Robinson, A., MacPherson, G., and Gordon, S. 1983. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J. Exp. Med. 158:1522‐1536.
   Jersmann, H. 2005. Time to abandon dogma: CD14 is expressed by non‐myeloid lineage cells. Immunol. Cell Biol. 83:462‐467.
   Jones, L.J., Gray, M., Yue, S.T., Haugland, R.P., and Singer, V.L. 2001. Sensitive determination of cell number using the CyQUANT cell proliferation assay. J. Immunol. Methods 254:85‐98.
   Jutila, M., Berg, E., Kroese, F., Rott, L., Perry, V., and Butcher, E. 1993. In vivo distribution and characterization of two novel mononuclear phagocyte differentiation antigens in mice. J. Leukoc. Biol. 54:30‐39.
   Kaiserling, E., Xiao, J., Ruck, P., and Horny, H. 1993. Aberrant expression of macrophage‐associated antigens (CD68 and Ki‐M1P) by Schwann cells in reactive and neoplastic neural tissue. Light‐ and electron‐microscopic findings. Mod. Pathol. 6:463‐468.
   Kapuściński, J., and Skoczylas, B. 1978. Fluorescent complexes of DNA with DAPI 4′,6‐diamidine‐2‐phenyl indole.2HCl or DCI 4′,6‐dicarboxyamide‐2‐phenyl indole. Nucleic Acids Res. 5:3775‐3799.
   Kawamoto, H. and Katsura, Y. 2009. A new paradigm for hematopoietic cell lineages: Revision of the classical concept of the myeloid‐lymphoid dichotomy. Trends Immunol. 30:193‐200.
   Kim, I., He, S., Yilmaz, O., Kiel, M., and Morrison, S. 2006. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood 108:737‐744.
   Kondo, M., Wagers, A., Manz, M., Prohaska, S., Scherer, D., Beilhack, G., Shizuru, J., and Weissman, I. 2003. Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annu. Rev. Immunol. 21:759‐806.
   Kraal, G. and Janse, M. 1986. Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody. Immunology 58:665‐669.
   Kraal, G., Rep, M., and Janse, M. 1987. Macrophages in T and B cell compartments and other tissue macrophages recognized by monoclonal antibody MOMA‐2: An immunohistochemical study. Scand. J. Immunol. 26:653‐661.
   Krishan, A. 1990. Rapid DNA content analysis by the propidium iodide‐hypotonic citrate method. Methods Cell Biol. 33:121‐125.
   Kunisch, E., Fuhrmann, R., Roth, A., Winter, R., Lungershausen, W., and Kinne, R. 2004. Macrophage specificity of three anti‐CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann. Rheum. Dis. 63:774‐784.
   Labarca, C. and Paigen, K. 1980. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102:344‐352.
   Latt, S. and Stetten, G. 1976. Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J. Histochem. Cytochem. 24:24‐33.
   Leenen, P., de Bruijn, M.F., Voerman, J., Campbell, P., and van Ewijk, W. 1994. Markers of mouse macrophage development detected by monoclonal antibodies. J. Immunol. Methods 174:5‐19.
   Lin, H. 1977. Colony formation in vitro by mouse blood monocytes. Blood. 49:593‐598.
   Lin, H.‐S., Kuhn, C., and Kuo, T.T. 1975. Clonal growth of hamster free alveolar cells in soft agar. J. Exp. Med. 142:877‐886.
   Lucas, T., Krugluger, W., Samorapoompichit, P., Gamperl, R., Beug, H., Förster, O., and Boltz‐Nitulescu, G. 1999. Self‐renewal, maturation, and differentiation of the rat myelomonocytic hematopoietic stem cell. FASEB J. 13:263‐272.
   Martin, M., Chauffert, B., Caignard, A., Pelletier, H., Hammann, A., and Martin, F. 1989. Histoimmunological characterization of the cellular reaction to liver metastases induced by colon cancer cells in syngeneic rats. Invasion Metastasis 9:216‐230.
   Matsumoto, H., Kumon, Y., Watanabe, H., Ohnishi, T., Shudou, M., Ii, C., Takahashi, H., Imai, Y., and Tanaka, J. 2007. Antibodies to CD11b, CD68, and lectin label neutrophils rather than microglia in traumatic and ischemic brain lesions. J. Neurosci. Res. 85:994‐1009.
   McCaffrey, T., Agarwal, L., and Weksler, B. 1988. A rapid fluorometric DNA assay for the measurement of cell density and proliferation in vitro. In Vitro Cell. Dev. Biol. 24:247‐252.
   McGarry, M.P. and Stewart, C.C. 1991. Murine eosinophil granulocytes bind the murine macrophage‐monocyte specific monoclonal antibody F4/80. J. Leukoc. Biol. 50:471‐478.
   McLennan, I. 1996. Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J. Anat. 188:17‐28.
   Menke, J., Iwata, Y., Rabacal, W., Basu, R., Yeung, Y., Humphreys, B., Wada, T., Schwarting, A., Stanley, E., and Kelley, V. 2009. CSF‐1 signals directly to renal tubular epithelial cells to mediate repair in mice. J. Clin. Invest. 119:2330‐2342.
   Morgan, C., Pollard, J., and Stanley, E. 1987. Isolation and characterization of a cloned growth factor dependent macrophage cell line, BAC1.2F5. J. Cell. Physiol. 130:420‐427.
   Mues, B., Langer, D., Zwadlo, G., and Sorg, C. 1989. Phenotypic characterization of macrophages in human term placenta. Immunology 67:303‐307.
   Oetke, C., Kraal, G., and Crocker, P. 2006. The antigen recognized by MOMA‐I is sialoadhesin. Immunol. Lett. 106:96‐98.
   Papadimitriou, E. and Lelkes, P. 1993. Measurement of cell numbers in microtiter culture plates using the fluorescent dye Hoechst 33258. J. Immunol. Methods 162:41‐45.
   Raschke, W., Baird, S., Ralph, P., and Nakoinz, I. 1978. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15:261‐267.
   Sarrazin, S., Mossadegh‐Keller, N., Fukao, T., Aziz, A., Mourcin, F., Vanhille, L., Kelly Modis, L., Kastner, P., Chan, S., Duprez, E., Otto, C., and Sieweke, M.H. 2009. MafB restricts M‐CSF‐dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138:300‐313.
   Sasmono, R., Ehrnsperger, A., Cronau, S., Ravasi, T., Kandane, R., Hickey, M., Cook, A., Himes, S., Hamilton, J., and Hume, D. 2007. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony‐stimulating factor receptor (CSF‐1R) as well as many other macrophage‐specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF‐1. J. Leukoc. Biol. 82:111‐123.
   Schluesener, H., Kremsner, P., and Meyermann, R. 1998. Widespread expression of MRP8 and MRP14 in human cerebral malaria by microglial cells. Acta Neuropathol. 96:575‐580.
   Schlueter, A. and Glasgow, J. 2006. Phenotypic comparison of multiple monocyte‐related populations in murine peripheral blood and bone marrow. Cytometry A 69:281‐290.
   Seiffert, M., Brossart, P., Cant, C., Cella, M., Colonna, M., Brugger, W., Kanz, L., Ullrich, A., and Bühring, H. 2001. Signal‐regulatory protein alpha (SIRPalpha) but not SIRPbeta is involved in T‐cell activation, binds to CD47 with high affinity, and is expressed on immature CD34(+)CD38(−) hematopoietic cells. Blood 97:2741‐2749.
   Sharpe, E.R., Teleron, A., Li, B., Price, J., Sands, M., Alford, K., and Young, P. 2006. The origin and in vivo significance of murine and human culture‐expanded endothelial progenitor cells. Am. J. Pathol. 168:1710‐1721.
   Sherr, C., Rettenmier, C., Sacca, R., Roussel, M., Look, A., and Stanley, E. 1985. The c‐fms proto‐oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF‐1. Cell 41:665‐676.
   Shih, J., Zeng, H., and Ogawa, M. 1992. Enrichment of murine marrow cells for progenitors of multilineage hemopoietic colonies. Leukemia 6:193‐198.
   Simmons, D. and Seed, B. 1988. Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells. J. Immunol. 141:2797‐2800.
   Stanley, E. 1989. Murine bone marrow‐derived macrophages. In Animal Cell Culture, 2nd Ed. (J.M. Walker and J.W. Pollard, eds.) pp. 301‐304. Humana Press, Totowa, N.J.
   Stanley, E.R., Hansen, G., Woodcock, J., and Metcalf, D. 1975. Colony stimulating factor and the regulation of granulopoiesis and macrophage production. Fed. Proc. 34:2272‐2278.
   Stanley, E., Chen, D., and Lin, H. 1978. Induction of macrophage production and proliferation by a purified colony stimulating factor. Nature 274:168‐170.
   Stanley, E.R. 2009. Colony stimulating factor‐1 regulation of macrophages in development and disease. In Innate Immunity: Host Recognition and Response in Health and Disease, The Biomedical & Life Sciences Collection (S. Gordon, ed.). Henry Stewart Talks Ltd., London.
   Sudo, T., Nishikawa, S., Ogawa, M., Kataoka, H., Ohno, N., Izawa, A., Hayashi, S., and Nishikawa, S. 1995. Functional hierarchy of c‐kit and c‐fms in intramarrow production of CFU‐M. Oncogene 11:2469‐2476.
   Takeya, M., Hsiao, L., and Takahashi, K. 1987. A new monoclonal antibody, TRPM‐3, binds specifically to certain rat macrophage populations: Immunohistochemical and immunoelectron microscopic analysis. J. Leukoc. Biol. 41:187‐195.
   Takeya, M., Hsiao, L., Shimokawa, Y., and Takahashi, K. 1989. Heterogeneity of rat macrophages recognized by monoclonal antibodies: An immunohistochemical and immunoelectron microscopic study. J. Histochem. Cytochem. 37:635‐641.
   Takeya, M., Tsuchiya, T., Shimokawa, Y., and Takahashi, K. 1991. A new monoclonal antibody, PM‐2K, specifically recognizes tissue macrophages but not blood monocytes. J. Pathol. 163:315‐321.
   Tushinski, R., Oliver, I., Guilbert, L., Tynan, P., Warner, J., and Stanley, E. 1982. Survival of mononuclear phagocytes depends on a lineage‐specific growth factor that the differentiated cells selectively destroy. Cell 28:71‐81.
   van Beek, E., Cochrane, F., Barclay, A., and van den Berg, T. 2005. Signal regulatory proteins in the immune system. J. Immunol. 175:7781‐7787.
   Veillette, A., Thibaudeau, E., and Latour, S. 1998. High expression of inhibitory receptor SHPS‐1 and its association with protein‐tyrosine phosphatase SHP‐1 in macrophages. J. Biol. Chem. 273:22719‐22728.
   Wan, C., Sigh, R., and Lau, B. 1994. A simple fluorometric assay for the determination of cell numbers. J. Immunol. Methods 173:265‐272.
   Wang, Y., Berezovska, O., and Fedoroff, S. 1999. Expression of colony stimulating factor‐1 receptor (CSF‐1R) by CNS neurons in mice. J. Neurosci. Res. 57:616‐632.
   Worton, R.G., McCulloch, E.A., and Till, J.E. 1969. Physical separation of hemopoietic stem cells from cells forming colonies in culture. J. Cell Physiol. 74:171‐182.
   Yilmaz, O., Kiel, M., and Morrison, S. 2006. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107:924‐930.
   Yrlid, U., Jenkins, C., and MacPherson, G. 2006. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady‐state conditions. J. Immunol. 176:4155‐4162.
   Yu, W., Chen, J., Xiong, Y., Pixley, F., Dai, X., Yeung, Y., and Stanley, E. 2008. CSF‐1 receptor structure/function in MacCsf1r‐/‐ macrophages: Regulation of proliferation, differentiation, and morphology. J. Leukoc. Biol. 84:852‐863.
   Ziegler‐Heitbrock, H. and Ulevitch, R. 1993. CD14: Cell surface receptor and differentiation marker. Immunol. Today 14:121‐125.
   Zwadlo, G., Voegeli, R., Osthoff, K., and Sorg, C. 1987. A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the down‐regulatory phase of the inflammatory process. Exp. Cell. Biol. 55:295‐304.
PDF or HTML at Wiley Online Library