Metabolomics‐Lipidomics of Eicosanoids and Docosanoids Generated by Phagocytes

Rong Yang1, Nan Chiang1, Sungwhan F. Oh1, Charles N. Serhan1

1 Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 14.26
DOI:  10.1002/0471142735.im1426s95
Online Posting Date:  November, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Lipid mediators derived from essential fatty acids, such as arachidonic acid, play important roles in physiologic and pathophysiologic processes. Prostaglandins, thromboxane, and leukotrienes are well‐known eicosanoids that play critical roles in hemodynamics and inflammation. New families of mediators were recently uncovered that constitute a new genus stimulating resolution of acute inflammation, and are organ‐protective. These include the resolvins (E‐series and D‐series), protectins (neuroprotectin D1/protectin D1), and maresins biosynthesized from omega‐3 essential fatty acids. Phagocytes play major roles in tissue homeostasis and have a high capacity to produce these mediators, which depend on their tissue and state of activation. It is important to select appropriate methods for identifying target mediators and pathway biomarkers. In this unit, we review state‐of‐the‐art approaches to identify and profile eicosanoid and docosanoid pathways, including specialized pro‐resolving mediators resolvins, protectins, and maresins, in relation to their biosynthesis and inactivation by neutrophils and macrophages. Curr. Protoc. Immunol. 95:14.26.1‐14.26.26. © 2011 by John Wiley & Sons, Inc.

Keywords: lipid mediators; inflammation; resolution; prostaglandins; leukotrienes; resolvins; maresins

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Summary
  • Acknowledgments
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Ackman, R.G. 1984. Straight chain fatty acids. In CRC Handbook of Chromatography: Lipids (H.K. Mangold, ed.) pp. 95‐240. CRC Press, Boca Raton. Fla.
   Aderem, A.A. and Cohn, Z.A. 1988. Calcium ionophore synergizes with bacterial lipopolysaccharides in activating macrophage arachidonic acid metabolism. J. Exp. Med. 167:623‐631.
   Adler, D.H., Phillips, J.A., Cogan, J.D., Iverson, T.M., Schnetz‐Boutaud, N., Stein, J.A., Brenner, D.A., Milne, G.L., Morrow, J.D., Boutaud, O., and Oates, J.A. 2009. The enteropathy of prostaglandin deficiency. J. Gastroenterol. 19:1‐7.
   Arita, M., Clish, C.B., and Serhan, C.N. 2005. The contributions of aspirin and microbial oxygenase in the biosynthesis of anti‐inflammatory resolvins: Novel oxygenase products from omega‐3 polyunsaturated fatty acids. Biochem. Biophy. Res. Commun. 338:149–157.
   Birmelin, M. and Decker, K. 1984. Synthesis of prostanoids and cyclic nucleotides by phagocytosing rat Kupffer cells. Eur. J. Biochem. 142:219‐225.
   Calorini, L., Mannini, A., Bianchini, F., Mugnai, G., and Ruggieri, S. 2000. The change in leukotrienes and lipoxins in activated mouse peritoneal macrophages. Biochim. Biophys. Acta 1484:87‐92.
   Chiang, N. and Serhan, C.N. 2006. Cell‐cell interaction in the transcellular biosynthesis of novel omega‐3‐derived lipid mediators. In Cell‐Cell Interactions: Methods and Protocols (S.P. Colgan, ed.). Humana Press, Totowa, N.J.
   Chiang, N., Bermudez, E.A., Ridker, P.M., Hurwitz, S., and Serhan, C.N. 2004. Aspirin triggers anti‐inflammatory 15‐epi‐lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc. Natl. Acad. Sci. U.S.A. 101:15178‐15183.
   Christie, W. 2003. Lipid Analysis. The Oily Press, Bridgewater, England.
   Clària, J. and Serhan, C.N. 1995. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell‐leukocyte interactions. Proc. Natl. Acad. Sci. U.S.A. 92:9475‐9479.
   Conrad, D.J., Kuhn, H., Mulkins, M., Highland, E., and Sigal, E. 1992. Specific inflammatory cytokines regulate the expression of human monocyte 15‐lipoxygenase. Proc. Natl. Acad. Sci. U.S.A. 89:217‐221.
   Cotran, R.S., Kumar, V., and Collins, T. (eds.) 1999. Robbins Pathologic Basis of Disease. W.B. Saunders Co., Philadelphia.
   Deems, R., Buczynski, M.W., Bowers‐Gentry, R., Harkewicz, R., and Dennis, E.A. 2007. Detection and quantitation of eicosanoids via high performance liquid chromatography‐electrospray ionization‐mass spectrometry. Methods Enzymol. 432:59‐82.
   Freire‐de‐Lima, C.G., Xiao, Y.Q., Gardai, S.J., Bratton, D.L., Schiemann, W.P., and Henson, P.M. 2006. Apoptotic cells, through transforming growth factor‐beta, coordinately induce anti‐inflammatory and suppress pro‐inflammatory eicosanoid and NO synthesis in murine macrophages. J. Biol. Chem. 281:38376‐38384.
   Fu, J.‐Y., Masferrer, J.L., Seibert, K., Raz, A., and Needleman, P. 1990. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J. Biol. Chem. 265:16737‐16740.
   Gilbert, R.S., Reddy, S.T., Targan, S., and Herschman, H.R. 1994. TGF‐beta 1 augments expression of the TIS10/prostaglandin synthase‐2 gene in intestinal epithelial cells. Cell Mol. Biol. Res. 40:653‐660.
   Herrmann, F., Lindemann, A., Gauss, J., and Mertelsmann, R. 1990. Cytokine‐stimulation of prostaglandin synthesis from endogenous and exogenous arachidonic acids in polymorphonuclear leukocytes involving activation and new synthesis of cyclooxygenase. Eur. J. Immunol. 20:2513‐2516.
   Hla, T. and Neilson, K. 1992. Human cyclooxygenase‐2 cDNA. Proc. Natl. Acad. Sci. USA 89:7384‐7388.
   Hong, S., Gronert, K., Devchand, P., Moussignac, R.‐L., and Serhan, C.N. 2003. Novel docosatrienes and 17S‐resolvins generated from docosahexaenoic acid in murine brain, human blood and glial cells: Autacoids in anti‐inflammation. J. Biol. Chem. 278:14677‐14687.
   Hong, S., Lu, Y., Yang, R., Gotlinger, K.H., Petasis, N.A., and Serhan, C.N. 2007. Resolvin D1, protectin D1, and related docosahexaenoic acid‐derived products: analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. J. Am. Soc. Mass Spectrom. 18:128‐144.
   Hong, S., Porter, T.F., Lu, Y., Oh, S.F., Pillai, P.S., and Serhan, C.N. 2008. Resolvin E1 metabolome in local inactivation during inflammation‐resolution. J. Immunol. 180:3512‐3519.
   Ivanova, P.T., Milne, S.B., Byrne, M.O., Xiang, Y., and Brown, H.A. 2007. Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods Enzymol. 432:21‐57.
   Kasuga, K., Yang, R., Porter, T.F., Agrawal, N., Petasis, N.A., Irimia, D., Toner, M., and Serhan, C.N. 2008. Rapid appearance of resolvin precursors in inflammatory exudates: Novel mechanisms in resolution. J. Immunol. 181:8677‐8687.
   Kiss, L., Bieniek, E., Weissmann, N., Schütte, H., Sibelius, U., Günther, A., Bier, J., Mayer, K., Henneking, K., Padberg, W., Grimm, H., Seeger, W., and Grimminger, F. 1998. Simultaneous analysis of 4‐ and 5‐series lipoxgenase and cytochrome P450 products from different biological sources by reversed‐phase high‐performance liquid chromatographic technique. Anal. Biochem. 261:16‐28.
   Lawrence, T. and Gilroy, D.W. 2007. Chronic inflammation: A failure of resolution? Int. J. Exp. Pathol. 88:85‐94.
   Lu, Y., Hong, S., Tjonahen, E., and Serhan, C.N. 2005. Mediator‐lipidomics: Databases and search algorithms for PUFA‐derived mediators. J. Lipid Res. 46:790‐802.
   Lu, Y., Hong, S., Gotlinger, K., and Serhan, C.N. 2006. Lipid mediator informatics and proteomics in inflammation‐resolution. ScientificWorldJournal 6:589‐614.
   Lu, Y., Hong, S., Yang, R., Uddins, J., Gotlinger, K.H., Petasis, N.A., and Serhan, C.N. 2007. Identification of endogenous resolvin E1 and other lipid mediators derived from eicosapentaenoic acid via electrospray low energy tandem mass spectrometry: Spectra and fragmentation mechanisms. Rapid Commun. Mass Spectrom. 21:7‐22.
   Maier, J.A., Hla, T., and Maciag, T. 1990. Cyclooxygenase is an immediate‐early gene induced by interleukin‐1 in human endothelial cells. J. Biol. Chem. 265:10805‐10808.
   Marcus, A.J., Broekman, M.J., Safier, L.B., Ullman, H.L., Islam, N., Serhan, C.N., Rutherford, L.E., Korchak, H.M., and Weissmann, G. 1982. Formation of leukotrienes and other hydroxy acids during platelet‐neutrophil interactions in vitro. Biochem. Biophys. Res. Commun. 109:130‐137.
   Masoodi, M. and Nicolaou, A. 2006. Lipidomic analysis of twenty‐seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20:3023‐3029.
   Merched, A., Ko, K., Gotlinger, K.H., Serhan, C.N., and Chan, L. 2008. Atherosclerosis: Evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 22:3595‐3606.
   Morris, T., Stables, M., Hobbs, A., de Souza, P., Colville‐Nash, P., Warner, T., Newson, J., Bellingan, G., and Gilroy, D.W. 2009. Effects of low‐dose aspirin on acute inflammatory responses in humans. J. Immunol. 183:2089‐2096.
   Murphy, R.C., Fiedler, J., and Hevko, J. 2001. Analysis of nonvolatile lipids by mass spectrometry. Chem. Rev. 101:479‐526.
   Murphy, R.C., Barkley, R.M., Zemski Berry, K., Hankin, J., Harrison, K., Johnson, C., Krank, J., McAnoy, A., Uhlson, C., and Zarini, S. 2005. Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal. Biochem. 346:1‐42.
   Nassar, G.M., Morrow, J.D., Roberts, L.J., II, Lakkis, F.G., and Badr, K.F. 1994. Induction of 15‐lipoxygenase by interleukin‐13 in human blood monocytes. J. Biol. Chem. 269:27631‐27634.
   Palmantier, R., Surette, M.E., Sanchez, A., Braquet, P., and Borgeat, P. 1994. Priming for the synthesis of 5‐lipoxygenase products in human blood ex vivo by human granulocyte‐macrophage colony‐stimulating factor and tumor necrosis factor‐alpha. Lab Invest. 70:696‐701.
   Patterson, R. and Harris, K.E. 1981. Inhibition of immunoglobulin E‐mediated, antigen‐induced monkey asthma and skin reactions by 5,8,11,14‐eicosatetraynoic acid. J. Allergy Clin. Immunol. 67:146‐152.
   Pouliot, M., Gilbert, C., Borgeat, P., Poubelle, P.E., Bourgoin, S., Créminon, C., Maclouf, J., McColl, S.R., and Naccache, P.H. 1998a. Expression and activity of prostaglandin endoperoxide synthase‐2 in agonist‐activated human neutrophils. FASEB J. 12:1109‐1123.
   Pouliot, M., James, M.J., McColl, S.R., Naccache, P.H., and Cleland, L.G. 1998b. Monosodium urate microcrystals induce cyclooxygenase‐2 in human monocytes. Blood 91:1769‐1776.
   Powell, W.S. 1999. Extraction of eicosanoids from biological fluids, cells, and tissues. Methods Mol. Biol. 120:11‐24.
   Raz, A., Wyche, A., Siegel, N., and Needleman, P. 1988. Regulation of fibroblast cyclooxygenase synthesis by interleukin‐1. J. Biol. Chem. 263:3022‐3028.
   Reibman, J., Haines, K.A., Rich, A.M., Cristello, P., Giedd, K.N., and Weissmann, G. 1986. Colchicine inhibits ionophore‐induced formation of leukotriene B4 by human neutrophils: The role of microtubules. J. Immunol. 136:1027‐1032.
   Russell, D.G. and Gordon, S. (eds.) 2009. Phagocyte‐Pathogen Interactions: Macrophages and the Host Response to Infection. ASM Press, Washington.
   Samuelsson, B. 1983. Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science 220:568‐575.
   Samuelsson, B., Dahlen, S.E., Lindgren, J.A., Rouzer, C.A., and Serhan, C.N. 1987. Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects. Science 237(4819):1171‐1176.
   Schneider, C., Yu, Z., Boeglin, W.E., Zheng, Y., and Brash, A.R. 2007. Enantiomeric separation of hydroxy and hydroperoxy eicosanoids by chiral column chromatography. Meth. Enzymol. 433:145‐157.
   Schwab, J.M., Chiang, N., Arita, M., and Serhan, C.N. 2007. Resolvin E1 and protectin D1 activate inflammation‐resolution programmes. Nature 447:869‐874.
   Serhan, C.N. 1990. High‐performance liquid chromatography separation and determination of lipoxins. Meth. Enzymol. 187:167‐175.
   Serhan, C.N., and Sheppard, K.A. 1990. Lipoxin formation during human neutrophil‐platelet interactions. Evidence for the transformation of leukotriene A4 by platelet 12‐lipoxygenase in vitro. J. Clin. Invest. 85:772‐780.
   Serhan, C.N., Hamberg, M., and Samuelsson, B. 1984a. Lipoxins: Novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc. Natl. Acad. Sci. U.S.A. 81:5335‐5339.
   Serhan, C.N., Lundberg, U., Weissmann, G., and Samuelsson, B. 1984b. Formation of leukotrienes and hydroxy acids by human neutrophils and platelets exposed to monosodium urate. Prostaglandins 27:563‐581.
   Serhan, C.N., Clish, C.B., Brannon, J., Colgan, S.P., Chiang, N., and Gronert, K. 2000. Novel functional sets of lipid‐derived mediators with antiinflammatory actions generated from omega‐3 fatty acids via cyclooxygenase 2‐nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192:1197‐1204.
   Serhan, C.N., Hong, S., Gronert, K., Colgan, S.P., Devchand, P.R., Mirick, G., and Moussignac, R.‐L. 2002. Resolvins: A family of bioactive products of omega‐3 fatty acid transformation circuits initiated by aspirin treatment that counter pro‐inflammation signals. J. Exp. Med. 196:1025‐1037.
   Serhan, C.N., Gotlinger, K., Hong, S., Lu, Y., Siegelman, J., Baer, T., Yang, R., Colgan, S.P., and Petasis, N.A. 2006. Anti‐inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: Assignments of dihydroxy‐containing docosatrienes. J. Immunol. 176:1848‐1859.
   Serhan, C.N., Lu, Y., Hong, S., and Yang, R. 2007. Mediator lipidomics: Search algorithms for eicosanoids, resolvins and protectins. Methods Enzymol. 432:275–317.
   Serhan, C.N., Chiang, N., and Van Dyke, T.E. 2008. Resolving inflammation: Dual anti‐inflammatory and pro‐resolution lipid mediators. Nat. Rev. Immunol. 8:249‐261.
   Serhan, C.N., Yang, R., Martinod, K., Kasuga, K., Pillai, P.S., Porter, T.F., Oh, S.F., and Spite, M. 2009. Maresins: Novel macrophage mediators with potent anti‐inflammatory and pro‐resolving actions. J. Exp. Med. 206:15‐23.
   Simopoulos, A.P., Leaf, A., and Salem, N, Jr. 1999. Workshop on the essentiality of and recommended dietary intakes for omega‐6 and omega‐3 fatty acids. J. Am. Coll. Nutr. 18:487‐489.
   Spite, M., Norling, L.V., Summers, L., Yang, R., Cooper, D., Petasis, N.A., Flower, R.J., Perretti, M., and Serhan, C.N. 2009. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461:1287‐1291.
   Sun, Y.‐P., Oh, S.F., Uddin, J., Yang, R., Gotlinger, K., Campbell, E., Colgan, S.P., Petasis, N.A., and Serhan, C.N. 2007. Resolvin D1 and its aspirin‐triggered 17R epimer: Stereochemical assignments, anti‐inflammatory properties and enzymatic inactivation. J. Biol. Chem. 282:9323‐9334.
   Tjonahen, E., Oh, S.F., Siegelman, J., Elangovan, S., Percarpio, K.B., Hong, S., Arita, M., and Serhan, C.N. 2006. Resolvin E2: Identification and anti‐inflammatory actions: Pivotal role of human 5‐lipoxygenase in resolvin E series biosynthesis. Chem. Biol. 13:1193‐1202.
   Wei, S., Brittin, J.J., Falck, J.R., Anjaiah, S., Nithipatikom, K., Cui, L., Campbell, W.B., and Capdevila, J.H. 2006. Chiral resolution of the epoxyeicosatrienoic acids, arachidonic acid epoxygenase metabolites. Anal. Biochem. 352:129‐134.
   Williams, M.V., Lee, S.H., and Blair, I.A. 2005. Liquid chromatography/mass spectrometry analysis of bifunctional electrophiles and DNA adducts from vitamin C mediated decomposition of 15‐hydroperoxyeicosatetraenoic acid. Rapid Commun. Mass Spectrom. 19:849‐858.
   Yin, H., Brooks, J.D., Gao, L., Porter, N.A., and Morrow, J.D. 2007. Identification of novel autoxidation products of the omega‐3 fatty acid eicosapentaenoic acid in vitro and in vivo. J. Biol. Chem. 282:29890‐29901.
   Yu, C.‐L., Huang, M.‐H., Kung, Y.‐Y., Tsai, C.‐Y., Tsai, Y.‐Y., Tsai, S.‐T., Huang, D.‐F., Sun, K.‐H., Han, S.‐H., and Yu, H.‐S. 1998. Interleukin‐13 increases prostaglandin E2 (PGE2) production by normal human polymorphonuclear neutrophils by enhancing cyclooxygenase 2 (COX‐2) gene expression. Inflam. Res. 47:167‐173.
PDF or HTML at Wiley Online Library