Analysis and Purification of Mouse Intestinal Dendritic Cell and Macrophage Subsets by Flow Cytometry

Balázs Koscsó1, Milena Bogunovic1

1 Penn State University College of Medicine, Hershey, Pennsylvania
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 14.39
DOI:  10.1002/cpim.11
Online Posting Date:  August, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The unit presents a method for analysis of intestinal dendritic cell (DC) and macrophage subsets by flow cytometry in the single cell suspension prepared from the mouse small and large intestine (Basic Protocol). describes a strategy to enrich the hematopoietic cell fraction in the sample by Percoll gradient centrifugation, and describes preparation of single cell suspensions from specific tissue layers of the small intestine, such as the epithelium, villi mucosa, submucosa, and muscularis externa. Finally, Support Protocol explains how to purify specific intestinal DC and macrophage subsets by flow‐cytometry‐based cell sorting. © 2016 by John Wiley & Sons, Inc.

Keywords: flow cytometry; mouse intestinal dendritic cells; macrophage subsets

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Analysis of Intestinal Mononuclear Phagocyte (MP) Subsets by Flow Cytometry
  • Alternate Protocol 1: Enrichment of Intestinal Hematopoietic Cells by Percoll Gradient Centrifugation
  • Alternate Protocol 2: Preparation of Single Cell Suspensions from The Small Intestinal Layers
  • Support Protocol 1: Purification of Intestinal Mononuclear Phagocyte (MP) Subsets by Cell Sorting
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Analysis of Intestinal Mononuclear Phagocyte (MP) Subsets by Flow Cytometry

  • Mice (e.g., strain C57Bl/6), 6 to 8 weeks old
  • 70% alcohol
  • Complete HBSS, 4°C (see recipe)
  • Complete HBSS with dithiothreitol (DTT), 4°C (see recipe)
  • Complete HBSS with EDTA, 4°C (see recipe)
  • Complete RPMI medium with collagenase type IV, 4°C (see recipe)
  • Fluorescence‐activated cell sorting (FACS) buffer, 4°C (see recipe)
  • Trypan blue solution
  • Directly conjugated anti‐mouse monoclonal antibodies:
    • CD45 (clone 30‐F11)
    • MHC Class II (I‐A/I‐E, clone M5/114.15.2)
    • CD11c (clone N418)
    • CD11b (clone M1/70)
    • CD103 (clone 2E7)
    • CD16/CD32 (clone 93)
  • 4′,6‐Diamidino‐2‐phenylindole (DAPI) solution (see recipe)
  • Dissection tools (microdissecting scissors, curved Vannas spring scissors, two pairs of standard 1.3‐mm tip curved forceps, Dumont forceps)
  • 50‐ml Falcon conical tubes
  • 5‐ml FACS polystyrene round bottom tubes
  • 6‐well cell culture plates
  • 5‐ml syringe with 19‐G needle
  • 40‐ and 70‐μm nylon mesh cell strainers
  • 40‐μm nylon mesh, cut in 2‐cm square pieces
  • Hemocytometer
  • Inverted tissue culture microscope
  • Thermostat‐controlled bench‐top orbital shaking incubator, 37°C
  • Centrifuge with rotor adapters for 15‐ and 50‐ml Falcon tubes and 5‐ml FACS tubes
  • Humidified cell culture incubator, 5% CO 2, 37 °C
  • Becton Dickinson 15‐color LSR II Special Order flow cytometer running FACSDiva 6 software (BD)
  • FlowJo X software (Tree Star)
  • Additional reagents and equipment for trypan blue cell viability test ( appendix 3B)
  • Additional reagents and equipment for euthanizing mice (unit 1.8, Donovan and Brown, )
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Bain, C.C., Bravo‐Blas, A., Scott, C.L., Gomez Perdiguero, E., Geissmann, F., Henri, S., Malissen, B., Osborne, L.C., Artis, D., and Mowat, A.M. 2014. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15:929‐937. doi: 10.1038/ni.2967.
  Bogunovic, M., Ginhoux, F., Wagers, A., Loubeau, M., Isola, L.M., Lubrano, L., Najfeld, V., Phelps, R.G., Grosskreutz, C., Scigliano, E., Frenette, P.S., and Merad, M. 2006. Identification of a radio‐resistant and cycling dermal dendritic cell population in mice and men. J. Exp. Med. 203:2627‐2638. doi: 10.1084/jem.20060667.
  Bogunovic, M., Ginhoux, F., Helft, J., Shang, L., Hashimoto, D., Greter, M., Liu, K., Jakubzick, C., Ingersoll, M.A., Leboeuf, M., Stanley, E.R., Nussenzweig, M., Lira, S.A., Randolph, G.J., and Merad, M. 2009. Origin of the lamina propria dendritic cell network. Immunity 31:513‐525. doi: 10.1016/j.immuni.2009.08.010.
  Cerovic, V., Houston, S.A., Scott, C.L., Aumeunier, A., Yrlid, U., Mowat, A.M., and Milling, S.W. 2013. Intestinal CD103‐ dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 6:104‐113. doi: 10.1038/mi.2012.53.
  Diehl, G.E., Longman, R.S., Zhang, J.X., Breart, B., Galan, C., Cuesta, A., Schwab, S.R., and Littman, D.R. 2013. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494:116‐120. doi: 10.1038/nature11809.
  Donovan, J. and Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4. doi: 10.1002/0471142735.im0108s73.
  Edelson, B.T., KC, W., Juang, R., Kohyama, M., Benoit, L.A., Klekotka, P.A., Moon, C., Albring, J.C., Ise, W., Michael, D.G., Bhattacharya, D., Stappenbeck, T.S., Holtzman, M.J., Sung, S.S., Murphy, T.L., Hildner, K., and Murphy, K.M. 2010. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207:823‐836. doi: 10.1084/jem.20091627.
  Farache, J., Koren, I., Milo, I., Gurevich, I., Kim, K.W., Zigmond, E., Furtado, G.C., Lira, S.A., and Shakhar, G. 2013. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38:581‐595. doi: 10.1016/j.immuni.2013.01.009.
  Ginhoux, F., Liu, K., Helft, J., Bogunovic, M., Greter, M., Hashimoto, D., Price, J., Yin, N., Bromberg, J., Lira, S.A., Stanley, E.R., Nussenzweig, M., and Merad, M. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206:3115‐3130.doi: 10.1084/jem.20091756.
  Gross, M., Salame, T.M., and Jung, S. 2015. Guardians of the gut ‐ murine intestinal macrophages and dendritic cells. Front. Immunol. 6:254. doi: 10.3389/fimmu.2015.00254.
  Hadis, U., Wahl, B., Schulz, O., Hardtke‐Wolenski, M., Schippers, A., Wagner, N., Muller, W., Sparwasser, T., Forster, R., and Pabst, O. 2011. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34:237‐246. doi: 10.1016/j.immuni.2011.01.016.
  Hashimoto, D., Miller, J., and Merad, M. 2011. Dendritic cell and macrophage heterogeneity in vivo. Immunity 35:323‐335. doi: 10.1016/j.immuni.2011.09.007.
  Hooper, L.V. and Macpherson, A.J. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10:159‐169. doi: 10.1038/nri2710.
  Jaensson, E., Uronen‐Hansson, H., Pabst, O., Eksteen, B., Tian, J., Coombes, J.L., Berg, P.L., Davidsson, T., Powrie, F., Johansson‐Lindbom, B., and Agace, W.W. 2008a. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205:2139‐2149. doi: 10.1084/jem.20080414.
  Jaensson, E., Uronen‐Hansson, H., Pabst, O., Eksteen, B., Tian, J., Coombes, J.L., Berg, P.L., Davidsson, T., Powrie, F., Johansson‐Lindbom, B., and Agace, W.W. 2008b. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205:2139‐2149. doi: 10.1084/jem.20080414.
  Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A., and Littman, D.R. 2000. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20:4106‐4114. doi: 10.1128/MCB.20.11.4106‐4114.2000.
  Koscsó, B., Gowda, K., Schell, T.D., and Bogunovic, M. 2015. Purification of dendritic cell and macrophage subsets from the normal mouse small intestine. J. Immunol. Methods 421:1‐13. doi: 10.1016/j.jim.2015.02.013.
  Mazzini, E., Massimiliano, L., Penna, G., and Rescigno, M. 2014. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40:248‐261. doi: 10.1016/j.immuni.2013.12.012.
  McDonald, K.G., McDonough, J.S., Dieckgraefe, B.K., and Newberry, R.D. 2010. Dendritic cells produce CXCL13 and participate in the development of murine small intestine lymphoid tissues. Am. J. Pathol. 176:2367‐2377. doi: 10.2353/ajpath.2010.090723.
  Miller, J.C., Brown, B.D., Shay, T., Gautier, E.L., Jojic, V., Cohain, A., Pandey, G., Leboeuf, M., Elpek, K.G., Helft, J., Hashimoto, D., Chow, A., Price, J., Greter, M., Bogunovic, M., Bellemare‐Pelletier, A., Frenette, P.S., Randolph, G.J., Turley, S.J., Merad, M., and the Immunological Genome Consortium. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13:888‐899. doi: 10.1038/ni.2370.
  Mowat, A.M. and Agace, W.W. 2014. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14:667‐685. doi: 10.1038/nri3738.
  Muller, P.A., Koscsó, B., Rajani, G.M., Stevanovic, K., Berres, M.L., Hashimoto, D., Mortha, A., Leboeuf, M., Li, X.M., Mucida, D., Stanley, E.R, Dahan, S., Margolis, K.G, Gershon, M.D, Merad, M., and Bogunovic, M. 2014. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158:300‐313. doi: 10.1016/j.cell.2014.04.050.
  Niess, J.H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B.A., Vyas, J.M., Boes, M., Ploegh, H.L., Fox, J.G., Littman, D.R., and Reinecker, H.C. 2005. CX3CR1‐mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254‐258. doi: 10.1126/science.1102901.
  Rivollier, A., He, J., Kole, A., Valatas, V., and Kelsall, B.L. 2012. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209:139‐155. doi: 10.1084/jem.20101387.
  Schreiber, H.A., Loschko, J., Karssemeijer, R.A., Escolano, A., Meredith, M.M., Mucida, D., Guermonprez, P., and Nussenzweig, M.C. 2013. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J. Exp. Med. 210:2025‐2039. doi: 10.1084/jem.20130903.
  Schulz, O., Jaensson, E., Persson, E.K., Liu, X., Worbs, T., Agace, W.W., and Pabst, O. 2009. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206:3101‐3114. doi: 10.1084/jem.20091925.
  Varol, C., Vallon‐Eberhard, A., Elinav, E., Aychek, T., Shapira, Y., Luche, H., Fehling, H.J., Hardt, W.D., Shakhar, G., and Jung, S. 2009. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31:502‐512. doi: 10.1016/j.immuni.2009.06.025.
  Varol, C., Zigmond, E., and Jung, S. 2010. Securing the immune tightrope: Mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 10:415‐426. doi: 10.1038/nri2778.
  Zigmond, E., Varol, C., Farache, J., Elmaliah, E., Satpathy, A.T., Friedlander, G., Mack, M., Shpigel, N., Boneca, I.G., Murphy, K.M., Shakhar, G., Halpern, Z., and Jung, S. 2012. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen‐presenting cells. Immunity 37:1076‐1090. doi: 10.1016/j.immuni.2012.08.026.
PDF or HTML at Wiley Online Library