Induction and Quantification of NETosis

Carmelo Carmona‐Rivera1, Mariana J. Kaplan1

1 Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 14.41
DOI:  10.1002/cpim.16
Online Posting Date:  November, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Neutrophil extracellular traps (NET) are web‐like structures composed of nuclear material and neutrophil granular proteins that are released to the extracellular space after specific microbial or sterile inflammatory stimuli. NETosis is a specific type of cell death that ensues when neutrophils extrude NETs. It is important to develop validated standards to induce and quantify NETs in order to accurately compare results between laboratories and advance the understanding of this biological process and its implications in health and disease. This unit presents methods for isolating human neutrophils from peripheral blood and inducing NETs through various types of stimulation that rely on the production of reactive oxygen species from NADPH oxidase or mitochondria. Alternative methods are also described for low‐ and high‐throughput quantification of NETs. © 2016 by John Wiley & Sons, Inc.

Keywords: flow cytometry; immunofluorescence; neutrophils; neutrophil extracellular traps

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Induction of NETosis and Quantification by Immunofluorescence
  • Alternate Protocol 1: Induction of NETosis and Quantification by Multispectral Imaging Flow Cytometry
  • Alternate Protocol 2: Induction of NETosis and Quantification by Plate Assay
  • Support Protocol 1: Isolation of Human Neutrophils Using Polymorphprep
  • Support Protocol 2: Isolation of Human Neutrophils Using the EasySep Human Neutrophil Enrichment Kit
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Induction of NETosis and Quantification by Immunofluorescence

  Materials
  • Isolated purified neutrophils (e.g., unit 7.23 or protocol 4 or 2 below)
  • RPMI‐1640 medium without phenol red
  • Phorbol 12‐myristate 13‐acetate (PMA; Sigma, cat. no. P1565)
  • Calcium ionophore A23187 (Sigma, cat. no. C7522)
  • 4% (w/v) PFA (see recipe)
  • PBS, pH 7.4 ( appendix 2A)
  • Blocking buffer (see recipe)
  • Anti‐myeloperoxidase (Dako, cat. no. A0398) or anti‐elastase antibody (Abcam, cat. no. ab21595)
  • Secondary antibody (e.g., for rabbit primary antibody, use goat anti‐rabbit IgG Alexa Fluor 555)
  • Hoechst 33342
  • ProLong Gold antifade mounting medium
  • 24‐well plate
  • Poly‐L‐lysine‐coated 12‐mm round glass coverslips
  • 1.5‐ml microcentrifuge tubes
  • Humidified incubator (37°C, 5% CO 2)
  • Curved Swiss Jewelers forceps
  • 75 × 25 × 1–mm microscope slides
  • Epifluorescence or confocal microscope equipped with 40× objective and filters to detect excitation/emission at 350/461 nm (Hoechst) and 555/565 nm (Alexa Fluor 555)
  • Imaging software (e.g., Photoshop or ImageJ)

Alternate Protocol 1: Induction of NETosis and Quantification by Multispectral Imaging Flow Cytometry

  Additional Materials (also see protocol 1Basic Protocol)
  • FITC‐coupled anti‐MPO antibody (Abcam, cat. no. ab11729)
  • 2% (w/v) paraformaldehyde
  • Multispectral Imaging Flow Cytometer (Amnis)

Alternate Protocol 2: Induction of NETosis and Quantification by Plate Assay

  Additional Materials (also see protocol 1Basic Protocol)DNA dye(s):
  • Sytox Green (cell impermeable; Thermo Fisher, cat. no. S7020)
  • Sytox Orange (cell impermeable; Thermo Fisher, cat. no. S34861) plus PicoGreen (cell permeable; Thermo Fisher, cat. no. P7589)
  • Laminar flow hood
  • 96‐well black plate
  • Microplate reader equipped with filter to detect excitation/emission at 488/520 nm

Support Protocol 1: Isolation of Human Neutrophils Using Polymorphprep

  Materials
  • Polymorphprep gradient medium (Cosmo Bio USA, cat. no. AXS‐1114683)
  • 15‐ml human blood collected in EDTA‐treated tube
  • PBS ( appendix 2A)
  • RPMI‐1640 medium without phenol red
  • Laminar flow hood
  • 15‐ and 50‐ml conical tubes
  • Hemacytometer

Support Protocol 2: Isolation of Human Neutrophils Using the EasySep Human Neutrophil Enrichment Kit

  Materials
  • HetaSep (red blood cell sedimentation reagent; Stemcell Technologies, cat. no. 07806)
  • 10‐ml human blood collected in anti‐coagulant‐treated tube
  • Supplemented PBS (see recipe)
  • EasySep Human Neutrophil Enrichment Kit (Stemcell Technologies, cat no. 19257) containing enrichment cocktail and magnetic particles
  • Laminar flow hood
  • 15‐ and 50‐ml conical tubes
  • EasySep Magnet
  • Hemocytometer
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abi Abdallah, D.S., Lin, C., Ball, C.J., King, M.R., Duhamel, G. E., and Denkers, E. Y. 2012. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect. Immun. 80:768‐777 doi: 10.1128/IAI.05730‐11.
  Beiter, K., Wartha, F., Albiger, B., Normark, S., Zychlinsky, A., and Henriques‐Normark, B. 2006. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 16:401‐407. doi: 10.1016/j.cub.2006.01.056.
  Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., and Zychlinsky, A. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532‐1535. doi: 10.1126/science.1092385.
  Carmona‐Rivera, C., Zhao, W., Yalavarthi, S., and Kaplan, M.J. 2015. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase‐2. Ann. Rheum. Dis. 74:1417‐1424. doi: 10.1136/annrheumdis‐2013‐204837. Epub 2014 Feb 25.
  Clark, S.R., Ma, A.C., Tavener, S.A., McDonald, B., Goodarzi, Z., Kelly, M.M., Patel, K.D., Chakrabarti, S., McAvoy, E., Sinclair, G.D., Keys, E.M., Allen‐Vercoe, E., Devinney, R., Doig, C.J, Green, F.H., and Kubes, P. 2007. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13:463‐469 doi: 10.1038/nm1565.
  Cools‐Lartigue, J., Spicer, J., McDonald, B., Gowing, S., Chow, S., Giannias, B., Bourdeau, F., Kubes, P., and Ferri, L. 2013. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 123:3446‐3458. doi: 10.1172/JCI67484. Epub ahead of print.
  Douda, D.N., Khan, M.A., Grasemann, H., and Palaniyar, N. 2015. SK3 channel and mitochondrial ROS mediate NADPH oxidase‐independent NETosis induced by calcium influx. Proc. Natl. Acad. Sci. U.S.A. 112:2817‐2822. doi: 10.1073/pnas.1414055112. Epub 2015 Feb 17.
  Fadini, G.P., Menegazzo, L., Rigato, M., Scattolini, V., Poncina, N., Bruttocao, A., Ciciliot, S., Mammano, F., Ciubotaru, C.D., Brocco, E., Marescotti, M.C., Cappellari, R., Arrigoni, G., Millioni, R., Vigili de Kreutzenberg, S., Albiero, M., and Avogaro, A. 2016. NETosis delays diabetic wound healing in mice and humans. Diabetes 65:1061‐1071. doi: 10.2337/db15‐0863. Epub ahead of print.
  Fuchs, T.A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D.D. Jr., Wrobleski, S.K., Wakefield, T.W., Hartwig, J.H., and Wagner, D.D. 2010. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. U.S.A. 107:15880‐15885. doi: 10.1073/pnas.1005743107.
  Gonzalez, A.S., Bardoel, B.W., Harbort, C.J., and Zychlinsky, A. 2014. Induction and quantification of neutrophil extracellular traps. Methods Mol. Biol. 1124:307‐318. doi: 10.1007/978‐1‐62703‐845‐4_20.
  Grayson, P.C., Carmona‐Rivera, C., Xu, L., Lim, N., Gao, Z., Asare, A.L., Specks, U., Stone, J.H., Seo, P., Spiera, R.F., Langford, C.A., Hoffman, G.S., Kallenberg, C.G., St Clair, E.W., Tchao, N.K., Ytterberg, S.R., Phippard, D.J., Merkel, P.A., Kaplan, M.J., Monach, P.A., and Rituximab in ANCA‐Associated Vasculitis‐Immune Tolerance Network Research Group. 2015. Neutrophil‐related gene expression and low‐density granulocytes associated with disease activity and response to treatment in antineutrophil cytoplasmic antibody‐associated vasculitis. Arthritis Rheumatol. 67:1922‐1932. doi: 10.1002/art.39153.
  Gupta, A.K., Hasler, P., Holzgreve, W., Gebhardt, S., and Hahn, S. 2005. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL‐8 and their presence in preeclampsia. Hum. Immunol. 66:1146‐1154. doi: 10.1016/j.humimm.2005.11.003.
  Khandpur, R., Carmona‐Rivera, C., Vivekanandan‐Giri, A., Gizinski, A., Yalavarthi, S., Knight, J.S., Friday, S., Li, S., Patel, R.M., Subramanian, V., Thompson, P., Chen, P., Fox, D.A., Pennathur, S., and Kaplan, M.J. 2013. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5:178ra40. doi: 10.1126/scitranslmed.3005580.
  Knight, J.S., Zhao, W., Luo, W., Subramanian, V., O'Dell, A.A., Yalavarthi, S., Hodgin, J.B., Eitzman, D.T., Thompson, P.R., and Kaplan, M.J. 2013. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Invest. 123:2981‐2993. doi: 10.1172/JCI67390. Epub 2013 Jun 3.
  Kuhns, D.G., Long Priel, D.A., Chu, J., and Zarember, K.A. 2015. Isolation and functional analysis of human neutrophils. Curr. Protoc. Immunol. 111:7.23.1‐7.23.16. doi: 10.1002/0471142735.im0723s111.
  Lande, R., Ganguly, D., Facchinetti, V., Frasca, L., Conrad, C., Gregorio, J., Meller, S., Chamilos, G., Sebasigari, R., Riccieri, V., Bassett, R., Amuro, H., Fukuhara, S., Ito, T., Liu, Y.J., and Gilliet, M. 2011. Neutrophils activate plasmacytoid dendritic cells by releasing self‐DNA‐peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3:73ra19. doi: 10.1126/scitranslmed.3001180.
  Lood, C., Blanco, L.P., Purmalek, M.M., Carmona‐Rivera, C., De Ravin, S.S., Smith, C.K., Malech, H.L., Ledbetter, J.A., Elkon, K.B., and Kaplan, M.J. 2016. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus‐like disease. Nat. Med. 22:146‐153. doi: 10.1038/nm.4027. Epub 2016 Jan 18.
  Metzler, K.D., Goosmann, C., Lubojemska, A., and Zychlinsky, A., Papayannopoulos, V. 2014. A myeloperoxidase‐containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 8:883‐896. doi: 10.1016/j.celrep.2014.06.044. Epub 2014 Jul 24.
  Mitroulis, I., Kambas, K., Chrysanthopoulou, A., Skendros, P., Apostolidou, E., Kourtzelis, I., Drosos, G.I., Boumpas, D.T., and Ritis, K. 2011. Neutrophil extracellular trap formation is associated with IL‐1β and autophagy‐related signaling in gout. PLoS One 6:e29318. doi: 10.1371/journal.pone.0029318.
  Papayannopoulos, V., Metzler, K.D., Hakkim, A., and Zychlinsky, A. 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191:677‐691. doi: 10.1083/jcb.201006052. Epub 2010 Oct 25.
  Pilsczek, F.H., Salina, D., Poon, K.K., Fahey, C., Yipp, B.G., Sibley, C.D., Robbins, S.M., Green, F.H., Surette, M.G., Sugai, M., Bowden, M.G., Hussain, M., Zhang, K., and Kubes, P. 2010. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 185:7413‐7425. doi: 10.4049/jimmunol.1000675.
  Saitoh, T., Komano, J., Saitoh, Y., Misawa, T., Takahama, M., Kozaki, T., Uehata, T., Iwasaki, H., Omori, H., Yamaoka, S., Yamamoto, N., and Akira, S. 2012. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus‐1. Cell Host Microbe 12:109‐116. doi: 10.1016/j.chom.2012.05.015.
  Schauer, C., Janko, C., Munoz, L.E., Zhao, Y., Kienhöfer, D., Frey, B., Lell, M., Manger, B., Rech, J., Naschberger, E., Holmdahl, R., Krenn, V., Harrer, T., Jeremic, I., Bilyy, R., Schett, G., Hoffmann, M., and Herrmann, M. 2014. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20:511‐517. doi: 10.1038/nm.3547. Epub 2014 Apr 28.
  Urban, C.F., Reichard, U., Brinkmann, V., and Zychlinsky, A. 2006. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8:668‐676. doi: 10.1111/j.1462‐5822.2005.00659.x.
  Wang, Y., Li, M., Stadler, S., Correll, S., Li, P., Wang, D., Hayama, R., Leonelli, L., Han, H., Grigoryev, S.A., Allis, C.D., and Coonrod, S.A. 2009. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184:205‐213. doi: 10.1083/jcb.200806072. Epub 2009 Jan 19.
  Wong, S.L., Demers, M., Martinod, K., Gallant, M., Wang, Y., Goldfine, A.B., Kahn, C.R., and Wagner, D.D. 2015. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21:815‐819. doi: 10.1038/nm.3887. Epub 2015 Jun 15.
  Zhao, W., Fogg, D.K., and Kaplan, M.J. 2015. A novel image‐based quantitative method for the characterization of NETosis. J. Immunol. Methods 423:104‐110. doi: 10.1016/j.jim.2015.04.027. Epub 2015 May 20.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library