Dextran Sulfate Sodium (DSS)‐Induced Colitis in Mice

Benoit Chassaing1, Jesse D. Aitken1, Madhu Malleshappa1, Matam Vijay‐Kumar2

1 Center for Inflammation, Immunity, & Infection, Department of Biology, Georgia State University, Atlanta, Georgia, 2 Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 15.25
DOI:  10.1002/0471142735.im1525s104
Online Posting Date:  February, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis and Crohn's Disease, are complex and multifactorial diseases with unknown etiology. For the past 20 years, to study human IBD mechanistically, a number of murine models of colitis have been developed. These models are indispensable tools to decipher underlying mechanisms of IBD pathogenesis as well as to evaluate a number of potential therapeutics. Among various chemically induced colitis models, the dextran sulfate sodium (DSS)‐induced colitis model is widely used because of its simplicity and many similarities with human ulcerative colitis. This model has both advantages and disadvantages that must be considered when employed. This protocol describes the DSS‐induced colitis model, focusing on details and factors that could affect DSS‐induced pathology. Curr. Protoc. Immunol. 104:15.25.1‐15.25.14. © 2014 by John Wiley & Sons, Inc.

Keywords: chemical colitogen; intestinal inflammation; occult blood; myeloperoxidase; ulcerative colitis; inflammatory bowel disease

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Induction and Evaluation of DSS Colitis in Mice
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Induction and Evaluation of DSS Colitis in Mice

  • Male or female mice (8 weeks old; C57BL/6J and BALB/c)
  • 2.0% to 5.0% dextran sulfate sodium (DSS) salt (reagent‐grade, mol. wt. 36 to 50 kDa; MP Biomedicals, cat. no. 02160110) in autoclaved drinking water
  • 1.5% to 2.0% isoflurane anesthesia
  • Brominated deoxyuridine (BrdU, Invitrogen, cat. no. E10187)
  • 4 and 40 KDa FITC‐dextran (Sigma, cat. no. FD4)
  • PBS
  • 70% ethanol
  • 0.5% hexadecyltrimethylammonium bromide (Sigma, cat. no. H6269) in 50 mM PBS, pH 6.0
  • 1 mg/ml dianisidine dihydrochloride (Sigma, cat. no. D3252)
  • 0.00005% H 2O 2
  • RNAlater (Sigma, cat. no. R0901)
  • 10% buffered formalin
  • HBSS with 1.0% antibiotics (penicillin and streptomycin, Fisher, cat. no. BP2959)
  • Serum‐free RPMI1640 medium with 1.0% antibiotics (penicillin and streptomycin)
  • Mice cages
  • Ear punch
  • Animal balance
  • Sterile forceps
  • Microcentrifuge tubes
  • Hemoccult II Dispensapak Plus (Beckman Coulter, cat. no. 61130)
  • Coloview system (Karl Storz Veterinary Endoscopy)
  • Serum separator tubes: BD Microtainer tubes (BD Biosciences, cat. no. 365956)
  • Hitachi F‐4500 fluorescence spectrophotometer
  • Scalpel
  • Photographic equipment
  • 5‐ to 10‐ml syringes with 18‐G, 3‐in. straight 2.25‐mm ball needles (Braintree Scientific)
  • UltraTurax homogenizer (IKA works)
  • Refrigerated centrifuge
  • 96‐well plates
  • Human neutrophil MPO (Sigma, cat. no. M6908)
  • Toothpicks
  • 24‐well plates
  • 37°C, 5.0% CO 2 incubator
  • Additional reagents and equipment for administering inhaled anesthesia to mice (Isoflurane, anesthesia induction chamber, Parkland Scientific, cat. no. 93805107), fixing tissue in 10% PBS‐buffered formalin (Fisher, cat. no. SF100‐4, Chassaing et al., ), hematoxylin and eosin (H&E) staining (Thermo, cat. no. 7231 and 7111; Chassaing et al., ), immunohistochemistry (BrdU staining kit, Invitrogen, cat. no. 93‐3943), RNA extraction (Trizol, Invitrogen, cat. no. 15596‐026), myeloperoxidase assay (Sigma, cat. no. H9151, D3252, 216763, and M6908), and fecal biomarker assay (R&D Systems, cat. no. DY1857)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Araki, A., Kanai, T., Ishikura, T., Makita, S., Uraushihara, K., Iiyama, R., Totsuka, T., Takeda, K., Akira, S., and Watanabe, M. 2005. MyD88‐deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. J. Gastroenterol. 40:16‐23.
  Carrier, J.C., Aghdassi, E., Jeejeebhoy, K., and Allard, J.P. 2006. Exacerbation of dextran sulfate sodium–induced colitis by dietary iron supplementation: Role of NF‐kappaB. Int. J. Colorectal Dis. 21:381‐387.
  Cerf‐Bensussan, N. and Gaboriau‐Routhiau, V. 2010. The immune system and the gut microbiota: Friends or foes? Nat. Rev. Immunol. 10:735‐744.
  Chassaing, B. and Darfeuille‐Michaud, A. 2011. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140:1720‐1728.
  Chassaing, B., Srinivasan, G., Delgado, M.A., Young, A.N., Gewirtz, A.T., and Vijay‐Kumar, M. 2012. Fecal lipocalin 2, a sensitive and broadly dynamic non‐invasive biomarker for intestinal inflammation. PLoS One 7:e44328.
  Dinarello, C.A. 1999. Interleukin‐18. Methods 19:121‐132.
  Ebach, D.R., Newberry, R., and Stenson, W.F. 2005. Differential role of tumor necrosis factor receptors in TNBS colitis. Inflamm. Bowel Dis. 11:533‐540.
  Eckmann, L., Nebelsiek, T., Fingerle, A.A., Dann, S.M., Mages, J., Lang, R., Robine, S., Kagnoff, M.F., Schmid, R.M., Karin, M., Arkan, M.C., and Greten, F.R. 2008. Opposing functions of IKKbeta during acute and chronic intestinal inflammation. Proc. Natl. Acad. Sci. U.S.A. 105:15058‐15063.
  Hoshino, T., Yagita, H., Ortaldo, J.R., Wiltrout, R.H., and Young, H.A. 2000. In vivo administration of IL‐18 can induce IgE production through Th2 cytokine induction and up‐regulation of CD40 ligand (CD154) expression on CD4+ T cells. Eur. J. Immunol. 30:1998‐2006.
  Hou, J.K., Abraham, B., and El‐Serag, H. 2011. Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature. Am. J. Gastroenterol. 106:563‐573.
  Ivanov, I.I., Atarashi, K., Manel, N., Brodie, E.L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K.C., Santee, C.A., Lynch, S.V., Tanoue, T., Imaoka, A., Itoh, K., Takeda, K., Umesaki, Y., Honda, K., and Littman, D.R. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485‐498.
  Johansson, M.E., Phillipson, M., Petersson, J., Velcich, A., Holm, L., and Hansson, G.C. 2008. The inner of the two Muc2 mucin‐dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. U.S.A. 105:15064‐15069.
  Kitajima, S., Takuma, S., and Morimoto, M. 2000. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp. Anim. 49:9‐15.
  Laroui, H., Ingersoll, S.A., Liu, H.C., Baker, M.T., Ayyadurai, S., Charania, M.A., Laroui, F., Yan, Y., Sitaraman, S.V., and Merlin, D. 2012. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano‐lipocomplexes with medium‐chain‐length fatty acids in the colon. PLoS ONE 7:e32084.
  Ma, X., Torbenson, M., Hamad, A.R., Soloski, M.J., and Li, Z. 2008. High‐fat diet modulates non‐CD1d‐restricted natural killer T cells and regulatory T cells in mouse colon and exacerbates experimental colitis. Clin. Exp. Immunol. 151:130‐138.
  Macdonald, M.L., Bissada, N., Vallance, B.A., and Hayden, M.R. 2009. Absence of stearoyl‐CoA desaturase‐1 does not promote DSS‐induced acute colitis. Biochimica Biophysica Acta 1791:1166‐1172.
  Nell, S., Suerbaum, S., and Josenhans, C. 2010. The impact of the microbiota on the pathogenesis of IBD: Lessons from mouse infection models. Nat. Rev. Microbiol. 8:564‐577.
  Nenci, A., Becker, C., Wullaert, A., Gareus, R., van Loo, G., Danese, S., Huth, M., Nikolaev, A., Neufert, C., Madison, B., Gumucio, D., Neurath, M.F., and Pasparakis, M. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446:557‐561.
  Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., and Nakaya, R. 1990. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694‐702.
  Poritz, L.S., Garver, K.I., Green, C., Fitzpatrick, L., Ruggiero, F., and Koltun, W.A. 2007. Loss of the tight junction protein ZO‐1 in dextran sulfate sodium induced colitis. J. Surg. Res. 140:12‐19.
  Rakoff‐Nahoum, S., Paglino, J., Eslami‐Varzaneh, F., Edberg, S., and Medzhitov, R. 2004. Recognition of commensal microflora by toll‐like receptors is required for intestinal homeostasis. Cell 118:229‐241.
  Rose, W.A. 2nd, Sakamoto, K., and Leifer, C.A. 2012. TLR9 is important for protection against intestinal damage and for intestinal repair. Sci. Rep. 2:574.
  Round, J.L. and Mazmanian, S.K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9:313‐323.
  Seril, D.N., Liao, J., Yang, C.S., and Yang, G.Y. 2005. Systemic iron supplementation replenishes iron stores without enhancing colon carcinogenesis in murine models of ulcerative colitis: Comparison with iron‐enriched diet. Dig. Dis. Sci. 50:696‐707.
  Steinbrecher, K.A., Harmel‐Laws, E., Sitcheran, R., and Baldwin, A.S. 2008. Loss of epithelial RelA results in deregulated intestinal proliferative/apoptotic homeostasis and susceptibility to inflammation. J. Immunol. 180:2588‐2599.
  Stevceva, L., Pavli, P., Husband, A., Ramsay, A., and Doe, W.F. 2001. Dextran sulphate sodium‐induced colitis is ameliorated in interleukin 4 deficient mice. Genes Immun. 2:309‐316.
  Takagi, H., Kanai, T., Okazawa, A., Kishi, Y., Sato, T., Takaishi, H., Inoue, N., Ogata, H., Iwao, Y., Hoshino, K., Takeda, K., Akira, S., Watanabe, M., Ishii, H., and Hibi, T. 2003. Contrasting action of IL‐12 and IL‐18 in the development of dextran sodium sulphate colitis in mice. Scand. J. Gastroenterol. 38:837‐844.
  Teixeira, L.G., Leonel, A.J., Aguilar, E.C., Batista, N.V., Alves, A.C., Coimbra, C.C., Ferreira, A.V., de Faria, A.M., Cara, D.C., and Alvarez Leite, J.I. 2011. The combination of high‐fat diet‐induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation. Lipids Health Dis. 10:204.
  van der Logt, E.M., Blokzijl, T., van der Meer, R., Faber, K.N., and Dijkstra, G. 2012. Westernized high‐fat diet accelerates weight loss in dextran sulfate sodium‐induced colitis in mice, which is further aggravated by supplementation of heme. J. Nutr. Biochem. 24:1159‐1165.
  Vijay‐Kumar, M., Wu, H., Aitken, J., Kolachala, V.L., Neish, A.S., Sitaraman, S.V., and Gewirtz, A.T. 2007. Activation of toll‐like receptor 3 protects against DSS‐induced acute colitis. Inflamm. Bowel Dis. 13:856‐864.
  Vijay‐Kumar, M., Aitken, J.D., Sanders, C.J., Frias, A., Sloane, V.M., Xu, J., Neish, A.S., Rojas, M., and Gewirtz, A.T. 2008. Flagellin treatment protects against chemicals, bacteria, viruses, and radiation. J. Immunol. 180:8280‐8285.
  Wang, K., Han, G., Dou, Y., Wang, Y., Liu, G., Wang, R., Xiao, H., Li, X., Hou, C., Shen, B., Guo, R., Li, Y., Shi, Y., and Chen, G. 2012. Opposite role of tumor necrosis factor receptors in dextran sulfate sodium‐induced colitis in mice. PLoS ONE 7:e52924.
  Watanabe, T., Asano, N., Murray, P.J., Ozato, K., Tailor, P., Fuss, I.J., Kitani, A., and Strober, W. 2008. Muramyl dipeptide activation of nucleotide‐binding oligomerization domain 2 protects mice from experimental colitis. J. Clin. Invest. 118:545‐559.
  Xavier, R.J. and Podolsky, D.K. 2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427‐434.
  Yan, Y., Kolachala, V., Dalmasso, G., Nguyen, H., Laroui, H., Sitaraman, S.V., and Merlin, D. 2009. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS ONE 4:e6073.
  Yoshimoto, T., Tsutsui, H., Tominaga, K., Hoshino, K., Okamura, H., Akira, S., Paul, W.E., and Nakanishi, K. 1999. IL‐18, although antiallergic when administered with IL‐12, stimulates IL‐4 and histamine release by basophils. Proc. Natl. Acad. Sci. U.S.A. 96:13962‐13966.
PDF or HTML at Wiley Online Library