Measurement of MHC/Peptide Interactions by Gel Filtration or Monoclonal Antibody Capture

John Sidney1, Scott Southwood1, Carrie Moore1, Carla Oseroff1, Clemencia Pinilla1, Howard M. Grey1, Alessandro Sette1

1 La Jolla Institute for Allergy and Immunology, La Jolla, California
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 18.3
DOI:  10.1002/0471142735.im1803s100
Online Posting Date:  February, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes a technique for the direct and quantitative measurement of the capacity of peptide ligands to bind Class I and Class II MHC molecules. The binding of a peptide of interest to MHC is assessed based on its ability to inhibit the binding of a radiolabeled probe peptide to purified MHC molecules. This unit includes protocols for the purification of Class I and Class II MHC molecules by affinity chromatography, and for the radiolabeling of peptides using the chloramine T method. An alternate protocol describes alterations in the basic protocol that are necessary when performing direct binding assays, which are required for (1) selecting appropriate high‐affinity, assay‐specific, radiolabeled ligands, and (2) determining the amount of MHC necessary to yield assays with the highest sensitivity. After a predetermined incubation period, dependent upon the allele under examination, the bound and unbound radiolabeled species are separated, and their relative amounts are determined. Three methods for separation are described, two utilizing size‐exclusion gel‐filtration chromatography and a third using monoclonal antibody capture of MHC. Data analysis for each method is also explained. Curr. Protoc. Immunol. 100:18.3.1‐18.3.36. © 2013 by John Wiley & Sons, Inc.

Keywords: MHC class I; MHC class II; T cell epitope; peptide ligand; binding affinity; CTL; epitope recognition

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Determination of Peptide Binding to Affinity‐Purified Class I and Class II MHC Molecules
  • Support Protocol 1: MHC Purification
  • Support Protocol 2: Radiolabeling of Peptides by the Chloramine T Method
  • Alternate Protocol 1: Direct Binding Assays to Identify Appropriate High‐Affinity Ligands
  • Support Protocol 3: Separation of MHC‐Peptide Complexes by Size‐Exclusion Gel‐Filtration Chromatography
  • Support Protocol 4: Separation of MHC‐Peptide Complexes by Antibody‐Based MHC Capture
  • Support Protocol 5: Preparation of Immunoaffinity Columns
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Determination of Peptide Binding to Affinity‐Purified Class I and Class II MHC Molecules

  Materials
  • Inhibitor peptides
  • Phosphate‐buffered saline (PBS; appendix 2A), pH 7.2 (Invitrogen)
  • Dimethylsulfoxide (DMSO)
  • 0.05% (v/v) Nonidet P‐40 (NP‐40; Fluka)/PBS, pH 7.2
  • Citrate/phosphate buffer (optional; see recipe)
  • MHC (see protocol 2 and protocol 4 for preparation and titration, respectively)
  • Protease inhibitor cocktail (prepare at step indicated, not in advance; see recipe)
  • 1 to 3 µM human β 2‐microglobulin (Class I only; Scripps Laboratories, cat. no. M0114)
  • 1.6% (v/v) NP‐40/PBS: PBS, pH 7.2 (Class II only)
  • 0.82% Pluronic in PBS, pH 7.2
  • 10% digitonin in water
  • Radiolabeled peptide (see protocol 3)
  • Reaction vessels (e.g., 96‐well polypropylene round‐bottom plates from Costar, or 12 × 75–mm culture tubes)
  • Mylar film plate sealer with adhesive backing (ICN Biomedicals) or Costar storage mat III (Corning)
  • Additional reagents and equipment for gel filtration or MHC capture and analysis (see Support Protocols protocol 53 and protocol 64)

Support Protocol 1: MHC Purification

  Materials
  • Cell line(s): examples include Epstein‐Barr virus (EBV)–transformed human B cell lines; mouse B cell lymphomas or mastocytomas; singly transfected fibroblast, C1R, or 721.221 lines; or Drosophila cells (see Tables 18.3.1, 18.3.2, and 18.3.3 for specific lines that have been used). Cells should be checked for MHC expression prior to purification (or at harvest when freezing for later use).
  • Complete RPMI‐10 ( appendix 2A)
  • Phosphate‐buffered saline (PBS; appendix 2A), pH 7.4
  • Lysis buffer (see recipe), ice cold
  • Washing buffer: 10 mM Tris⋅Cl, pH 8.0 ( appendix 2A) with 1% Nonidet P‐40 (store up to 6 months at 4°C)
  • 0.4% (w/v) octylglucoside in PBS
  • Elution buffer (see recipe)
  • 2 M Tris⋅Cl, pH 6.8 ( appendix 2A)
  • 2.5 M glycine, pH 2.5
  • 225‐cm2 tissue culture flasks or roller bottle apparatus
  • Refrigerated centrifuge
  • 0.8‐µm filter
  • Columns (50‐ml borosilicate glass containing one each of the following): inactivated Sepharose CL‐4B (10‐ml bed volume), protein A–Sepharose CL‐4B (5‐ml bed volume), and protein A‐Sepharose CL‐4B conjugated to the appropriate anti‐MHC antibody (Table 18.3.5; 10‐ml bed volume; see protocol 7 for conjugation)
  • Centriprep‐30 concentrator (Amicon)
  • Additional reagents and equipment for counting cells ( appendix 3A)
    Table 8.3.5   MaterialsMonoclonal Antibodies Used in MHC Purification or Capture

    Monoclonal antibody Specificity Source d
    M1/42 H‐2 Class I ATCC
    28‐14‐8S H‐2 Db and Ld ATCC
    34‐5‐8S H‐2 Dd ATCC
    Y3JP H‐2 IAb, IAs, IAu Janeway et al. ( )
    MKD6 H‐2 IAd ATCC
    10.3.6 H‐2 IAk ATCC
    14.4.4 H‐2 IEd, IEk ATCC
    B8‐24‐3 H‐2 Kb ATCC
    Y‐3 H‐2 Kb, Kk ATCC
    SF1‐1.1.1 H‐2 Kd ATCC
    B123.2 HLA B and C e Rebai and Malissen ( )
    W6/32 HLA Class I ATCC
    HB180 HLA Class II ATCC
    B7/21 HLA DP ATCC
    IVD12 HLA DQ ATCC
    SPVL3 HLA DQ Nepom et al. ( )
    LB3.1 HLA DR ATCC

     dATCC, American Type Culture Collection.
     eThe B123.2 antibody will also bind some HLA A molecules. To date, we have identified HLA A*2301, A*2601, A*2902, A*3001, A*3002, A*3101, A*3201 and A*3301 as B123.2 reactive. We would presume that corresponding subtypes are also reactive.

Support Protocol 2: Radiolabeling of Peptides by the Chloramine T Method

  Materials
  • Tyrosinated peptide (10 to 20 mg/ml)
  • Phosphate‐buffered saline (PBS), pH 7.4 ( appendix 2A) with and without 0.05% Tween 20 (Sigma)
  • ∼40 µM [Na125]I (∼100 µCi/µl; NEN Life Sciences, Perkin Elmer)
  • 0.1 mg/ml chloramine T (Sigma) in PBS/0.05% Tween 20
  • 0.1 mg/ml sodium metabisulfite (Fisher) in PBS/Tween
  • 10% (w/v) sodium azide
  • Ethanol
  • 0.82% NP‐40
  • Sephadex G‐10 column: multispin separation kits (Genesee Scientific) with a 0.8 ml bed volume suspended in PBS, pH 7.2
  • Microcentrifuge: Labnet International Spectrafuge 16M (cat. no. C0160‐R; http://www.labnetinternational.com/)
  • Polyethylene storage vessel (e.g., 1.5‐ml microcentrifuge tubes)

Alternate Protocol 1: Direct Binding Assays to Identify Appropriate High‐Affinity Ligands

  • Anti‐MHC monoclonal antibody (see first annotation to step 9): 30 µg/ml in 0.1 M Tris⋅Cl, pH 8.0 ( appendix 2A; the same antibodies used for the affinity columns for MHC purification are used in the capture assay)
  • Blocking solution: 0.3% (v/v) Tween 20 in PBS or 1% (w/v) BSA in PBS
  • 96‐well round‐bottom polystyrene microtiter plate (Greiner‐bio‐one, cat. no. 650201, http://www.greinerbioone.com/en/start/)
  • Mylar plate sealer with adhesive back (MP Biomedicals, LLC, cat. no. 76‐402‐05)
  • View Seal (Greiner‐bio‐one, cat. no. 676070, http://www.greinerbioone.com/en/start/)
  • Costar Sealing Mat (Corning, cat. no. 3080)
  • 96‐well flat‐bottom white polystyrene Optiplate (Greiner‐bio‐one, cat. no. 655074, http://www.greinerbioone.com/en/start/)
  • TopSeal‐A for 96‐well microplates (PerkinElmer, cat. no. 6005185)
  • Microscint‐20 (PerkinElmer; Cat. #6013621)
  • Topcount microscintillation counter (Perkin‐Elmer Instruments)

Support Protocol 3: Separation of MHC‐Peptide Complexes by Size‐Exclusion Gel‐Filtration Chromatography

  Materials
  • Protein A–Sepharose CL4 B (Sigma, cat. no. P‐3391)
  • Sepharose CL4 B (Sigma, cat. no. CL4B‐200; for use in uncoupled pre‐columns)
  • 100 mM borate buffer, pH 8.2: dissolve 6.18 g boric acid (Sigma, cat no. B‐7660)/9.54 g borax (Sigma, cat. no. B‐0127)/4.38 g NaCl in H 2O
  • Monoclonal antibody (approximately 20 to 30 mg; see annotation to step 3) in PBS, pH 7.2 (see below) at a concentration of about 2 mg/ml or higher
  • PBS, pH 7.2: 20 mM Na 2HPO 4/150 mM NaCl/0.05% NaN 3
  • 200 mM triethanolamine, pH 8.2 (Sigma, cat. no. T‐1377)
  • 20 mM dimethyl pimelimidate (DMP; Pierce, cat. no. 21667) in 200 mM triethanolamine, pH 8.2
  • Phosphate‐buffered saline (PBS, Invitrogen, cat. no. 10010‐023) containing 0.02% sodium azide (NaN 3;Fisher Scientific, cat. no. S227‐500)
  • 20 mM ethanolamine pH 8.2 (Sigma, cat. no. E‐9508)
  • 0.02% sodium azide (NaN 3) (Fisher Scientific, cat. no. S227‐500) in PBS, pH 7.2 (Invitrogen, cat. no. 10010‐023)
  • Elution buffer (see recipe)
  • 2 M glycine, pH 2.5
  • Washing buffer: 10 mM Tris⋅Cl, pH 8.0 ( appendix 2A) with 1% Nonidet P‐40 (store up to 6 months at 4°C)
  • 50‐ml borosilicate glass column with stopcock
  • Rotator
  • Spectrophotometer
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Alexander, J., Sidney, J., Southwood, S., Ruppert, J., Oseroff, C., Maewal, A., Snoke, K., Serra, H.M., Kubo, R.T., Sette, A., and Grey, H.M. 1994. Development of high potency universal DR‐restricted helper epitopes by modification of high affinity DR‐blocking peptides. Immunity 1:751‐761.
   Allen, T.M., Sidney, J., del Guercio, M.F., Glickman, R.L., Lensmeyer, G.L., Wiebe, D.A., DeMars, R., Pauza, C.D., Johnson, R.P., Sette, A., and Watkins, D. I. 1998. Characterization of the peptide binding motif of a rhesus MHC class I molecule (Mamu‐A*01) that binds an immunodominant CTL epitope from simian immunodeficiency virus. J. Immunol. 160:6062‐6071.
   Arlehamn, C.S., Sidney, J., Henderson, R., Greenbaum, J.A., James, E.A., Moutaftsi, M., Coler, R., McKinney, D.M., Park, D., Taplitz, R., Kwok, W.W., Grey, H., Peters, B., and Sette, A. 2012. Dissecting mechanisms of immunodominance to the common tuberculosis antigens ESAT‐6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). J. Immunol. In press.
   Assarsson, E., Sidney, J., Oseroff, C., Pasquetto, V., Bui, H.‐H., Frahm, N., Brander, C., Peters, B., Grey, H. and Sette, A. 2007. A quantitative analysis of the variables affecting the repertoire of T cell specificities recognized after vaccinia virus infection. J. Immunol. 178:7890‐7901.
   Assarsson, E., Bui, H.‐H., Sidney, J., Zhang, Q., Glenn, J., Oseroff, C., Mbawuike, I.N., Alexander, J., Newman, M.J., Grey, H., and Sette, A. 2008. Immunomic analysis of the repertoire of T‐cell specificities for influenza A virus in humans. J. Virol. 82:12241‐12251.
   Barber, L.D. and Parham, P. 1993. Peptide binding to major histocompatibility complex molecules. Annu. Rev. Cell Biol. 9:163‐206.
   Bolton, A.E. and Hunter, W.M. 1986. Radioimmunoassay and related methods. In Handbook of Experimental Immunology, Vol. 1: Immunochemistry (D.M. Weir, L.A. Herzenberg, C. Blackwell, and L.A. Herzenberg, eds.) pp. 26.1‐26.56. Blackwell Scientific, Oxford.
   Bonifacino, A., Dasso, M., Harford, J.B., Lippincott‐Schwartz, J., and Yamada, K.M. 2013. Current Protocols in Cell Biology. John Wiley & Sons, Hoboken, N.J.
   Boyd, L.F., Kozlowski, S., and Margulies, D.H. 1992. Solution binding of an antigenic peptide to a major histocompatibility complex class I molecule and the role of β2‐microglobulin. Proc. Natl. Acad. Sci. U.S.A. 89:2242‐2246.
   Buchli, R., VanGundy, R.S., Hickman‐Miller, H.D., Giberson, C.F., Bardet, W., and Hildebrand, W.H. 2004. Real‐time measurement of in vitro peptide binding to soluble HLA‐A*0201 by fluorescence polarization. Biochemistry 43:14852‐14863.
   Buchli, R., VanGundy, R.S., Hickman‐Miller, H.D., Giberson, C.F., Bardet, W., and Hildebrand, W.H. 2005. Development and validation of a fluorescence polarization‐based competitive peptide‐binding assay for HLA‐A*0201‐a new tool for epitope discovery. Biochemistry 44:12491‐12507.
   Bui, H.H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., Purton, K.A., Mothe, B.R., Chisari, F.V., Watkins, D.I., and Sette, A. 2005. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57:304‐314.
   Busch, R., Strang, G., Howland, K., and Rothbard, J.B. 1990. Degenerate binding of immunogenic peptides to HLA‐DR proteins on B cell surfaces. Int. Immunol. 2:443‐451.
   Buus, S., Sette, A., Colon, S.M., Jenis, D.M., and Grey, H.M. 1986. Isolation and characterization of antigen‐Ia complexes involved in T cell recognition. Cell 47:1071‐1077.
   Buus, S., Sette, A., Colon, S.M., Miles, C., and Grey, H.M. 1987. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science 235:1353‐1358.
   Buus, S., Sette, A., Colon, S.M., and Grey, H.M. 1988. Autologous peptides constitutively occupy the antigen binding site on Ia. Science 242:1045‐1047.
   Buus, S., Stryhn, A., Winther, K., Kirkby, N., and Pedersen, L.O. 1995. Receptor‐ligand interactions measured by an improved spun column chromatography technique. A high efficiency and high throughput size separation method. Biochim. Biophys. Acta 1243:453‐460.
   Ceppellini, R., Frumento, G., Ferrara, G.B., Tosi, R., Chersi, A., and Pernis, B. 1989. Binding of labelled influenza matrix peptide to HLA DR in living B lymphoid cells. Nature 339:392‐394.
   Cerundolo, V., Elliott, T., Elvin, J., Bastin, J., Rammensee, H.‐G., and Townsend, A. 1991. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. J. Immunol. 21:2069‐2075.
   Cheng, Y. and Prusoff, W.H. 1973. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099‐3108.
   Christnick, E.R., Luscher, M.A., Barber, B.H., and Williams, D.B. 1991. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352:67‐70.
   Cox, A.L., Skipper, J., Chen, Y., Henderson, R.A., Darrow, T.L., Shabanowitz, J., Engelhard, V.H., Hunt, D.F., and Slingluff, C.L. Jr. 1994. Identification of a peptide recognized by five melanoma‐specific human cytotoxic T cell lines. Science 264:716‐719.
   Dedier, S., Reinelt, S., Rion, S., Folkers, G., and Rognan, D. 2001. Use of fluorescence polarization to monitor MHC‐peptide interactions in solution. J. Immunol. Methods 255:57‐66.
   del Guercio, M.‐F., Sidney, J., Hermanson, G., Perez, C., Grey, H.M., Kubo, R.T., and Sette, A. 1995. Binding of a peptide antigen to multiple HLA alleles allows definition of an A2‐like supertype. J. Immunol. 154:685‐693.
   Engelhard, V.H. 1994. Structure of peptides associated with class I and class II MHC molecules. Annu. Rev. Immunol. 12:181‐207.
   Falk, K., Rötzschke, O., Stevanovic, S., Jung, G., and Rammensee, H.G. 1991. Allele‐specific motifs revealed by sequencing of self‐peptides eluted from MHC molecules. Nature 351:290‐296.
   Ferre, H., Ruffet, E., Blicher, T., Sylvester‐Hvid, C., Nielsen, L.L., Hobley, T.J., Thomas, O.R., and Buus, S. 2003. Purification of correctly oxidized MHC class I heavy‐chain molecules under denaturing conditions: A novel strategy exploiting disulfide assisted protein folding. Protein Science. 12:551‐559.
   Geluk, A., van Meijgaarden, K.E., Southwood, S., Oseroff, C., Wouter Drijfhout, J., de Vries, R.R.P., Ottenhoff, T.H.M., and Sette, A. 1994. HLA‐DR3 molecules can bind peptides carrying two alternative specific submotifs. J. Immunol. 152:5742‐5748.
   Germain, R.N. 1993. Antigen processing and presentation. In Fundamental Immunology, 3rd ed. (W.E. Paul, ed.) pp. 629‐676. Raven Press, New York.
   Germain, R.N. 1994. MHC‐dependent antigen processing and peptide presentation: Providing ligands for T lymphocyte activation. Cell 76:287‐299.
   Germain, R.N. and Margulies, D.H. 1993. The biochemistry and cell biology of antigen processing and presentation. Annu. Rev. Immunol. 11:403‐450.
   Greenbaum, J., Sidney, J., Chung, J., Brander, C., Peters, B., and Sette, A. 2011. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 63:325‐335.
   Greenwood, F., Hunter, W., and Glover, J. 1963. The preparation of 131I‐labeled human growth hormone of high specific radioactivity. Biochem. J. 89:114‐123.
   Gulukota, K., Sidney, J., Sette, A., and DeLisi, C. 1997. Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 267:1258‐1267.
   Hammer, J. 1995. New methods to predict MHC‐binding sequences within protein antigens. Curr. Opin. Immunol. 7:263‐269.
   Hammer, J., Valsasnini, P., Tolba, K., Bolin, D., Higelin, J., Takacs, B., and Sinigaglia, F. 1993. Promiscuous and allele‐specific anchors in HLA‐DR‐binding peptides. Cell 74:197‐203.
   Hammer, J., Bono, E., Gallazzi, F., Belunis, C., Nagy, Z., and Sinigaglia, F. 1994. Precise prediction of major histocompatibility complex class II‐peptide interaction based on peptide side chain scanning. J. Exp. Med. 180:2353‐2358.
   Harndahl, M., Justesen, S., Lamberth, K., Roder, G., Nielsen, M., and Buus, S. 2009. Peptide binding to HLA class I molecules: Homogenous, high‐throughput screening, and affinity assays. J. Biomol. Screen. 14:173‐180.
   Harndahl, M., Rasmussen, M., Roder, G., and Buus, S. 2011. Real‐time, high‐throughput measurements of peptide‐MHC‐I dissociation using a scintillation proximity assay. J. Immunol. Methods 374:5‐12.
   Harris, P.E., Colovai, A., Liu, Z., Dalla Favera, R., and Suciu‐Foca, N. 1993. Naturally processed HLA class I bound peptides from c‐myc‐transfected cells reveal allele‐specific motifs. J. Immunol. 151:5966‐5974.
   Hill, C.M., Hayball, J.D., Allison, A.A., and Rothbard, J.B. 1991. Conformational and structural characteristics of peptide binding to HLA‐DR molecules. J. Immunol. 147:189‐197.
   Hill, C.M., Liu, A., Marshall, K.W., Mayer, J., Jorgensen, B., Yuan, B., Cubbon, R.M., Nichols, E.A., Wicker, L.S., and Rothbard, J.B. 1994. Exploration of requirements for peptide binding to HLA DRB1*0101 and DRB1*0401. J. Immunol. 152:2890‐2898.
   Hoof, I., Peters, B., Sidney, J., Pedersen, L.E., Sette, A., Lund, O., Buus, S., and Nielsen, M. 2009. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61:1‐13.
   Hunt, D.F., Henderson, R.A., Shabanowitz, J., Sakaguchi, K., Michel, H., Sevilir, N., Cox, A.L., Appella, E., and Engelhard, V.H. 1992. Characterization of peptides bound to the class I MHC molecule HLA‐A2.1 by mass spectrometry. Science 255:1261‐1266.
   Janeway, C.A., Conrad, P.J., Lerner, E.A., Babich, J., Wettstein, P., and Murphy, D.B. 1984. Monoclonal antibodies specific for Ia glycoproteins raised by immunization with activated T cells: Possible role of T cell bound Ia antigens as targets of immunoregulatory T cells. J. Immunol. 132:662‐667.
   Joyce, S. and Nathenson, S.G. 1994. Methods to study peptides associated with MHC class I molecules. Curr. Opin. Immunol. 6:24‐31.
   Justesen, S., Harndahl, M., Lamberth, K., Nielsen, L.L., and Buus, S. 2009. Functional recombinant MHC class II molecules and high‐throughput peptide‐binding assays. Immunome Res. 5:2.
   Khilko, S.N., Corr, M., Boyd, L.F., Lees, A., Inman, J.K., and Margulies, D.H. 1993. Direct detection of major histocompatibility complex class I binding to antigenic peptides using surface plasmon resonance. J. Biol. Chem. 268:15425‐15434.
   Kondo, A., Sidney, J., Southwood, S., del Guercio, M.‐F., Appella, E., Sakamoto, J., Celis, E., Grey, H.M., Chesnut, R.W., Kubo, R.T., and Sette, A. 1995. Prominent roles of secondary anchor residues in peptide binding to HLA‐A24 human class I molecules. J. Immunol. 155:4307‐4312.
   Kondo, A., Sidney, J., Southwood, S., del Guercio, M.‐F., Appella, E., Sakamoto, J., Celis, E., Grey, H.M., Celis, E., Chesnut, R.W., Kubo, R.T., and Sette, A. 1997. Two distinct HLA‐A*0101‐specific submotifs illustrate alternative peptide binding modes. Immunogenetics 45:249‐258.
   Kotturi, M., Peters, B., Buendia‐Laysa, F., Sidney, J., Oseroff, C., Botten, J., Grey, H., Buchmeier, M., and Sette, A. 2007. The CD8+ T‐cell response to lymphocytic choriomeningitis virus involves the L antigen: Uncovering new tricks for an old virus. J. Virol. 81:4928‐4940.
   Kotturi, M.F., Botten, J., Sidney, J., Bui, H.‐H., Giancola, L., Maybeno, M., Babin, J., Oseroff, C., Pasquetto, V., Greenbaum, J.A., Peters, B., Ting, J., Do, D., Vang, L., Alexander, J., Grey, H., Buchmeier, M.J., and Sette, A. 2009. A multivalent and cross‐protective vaccine strategy against Arenaviruses associated with human disease. PLoS Pathog. 5:e100695.
   Kotturi, M., Botten, J., Maybeno, M., Sidney, J., Glenn, J., Bui, H.‐H., Oseroff, C., Crotty, S., Peters, B., Grey, H., Altmann, D., Buchmeier, M., and Sette, A. 2010. Polyfunctional CD4+ T cell responses to a set of pathogenic arenaviruses provide broad population coverage. Immunome Res. 6:4.
   Lamont, A.G., Powell, M.F., Colon, S.M., Miles, C., Grey, H.M., and Sette, A. 1990. The use of peptide analogs with improved stability and MHC binding capacity to inhibit antigen presentation in vitro and in vivo. J. Immunol. 144:2493‐2498.
   Lauemoller, S.L., Holm, A., Hilden, J., Brunak, S., Holst Nissen, M., Stryhn, A., Ostergaard Pedersen, L., and Buus, S. 2001. Quantitative predictions of peptide binding to MHC class I molecules using specificity matrices and anchor‐stratified calibrations. Tissue Antigens 57:405‐414.
   Lin, H.H., Zhang, G.L., Tongchusak, S., Reinherz, E.L., and Brusic, V. 2008a. Evaluation of MHC‐II peptide binding prediction servers: Applications for vaccine research. BMC Bioinformatics 9:S22.
   Lin, H.H., Ray, S., Tongchusak, S., Reinherz, E.L., and Brusic, V. 2008b. Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research. BMC Immunol. 9:8.
   Ljunggren, H.G., Stam, N.J., Ohlen, C., Neefjes, J.J., Hoglund, P., Heemels, M.T., Bastin, J., Schumacher, T.N.M., Townsend, A., Karre, K., and Ploegh, H.L. 1990. Empty MHC Class I molecules come out in the cold. Nature 346:476‐480.
   Loffredo, J.T., Sidney, J., Bean, A.T., Beal, D.R., Bardet, W., Wahl, A., Hawkins, O.E., Piaskowski, S., Wilson, N.A., Hildebrand, W.H., Watkins, D.I., and Sette, A. 2009. Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu‐B*08 and HLA‐B*2705, bind peptides with sequence similarity. J. Immunol. 182:7763‐7775.
   Madden, D.R. 1995. The three‐dimensional structure of peptide‐MHC complexes. Annu. Rev. Immunol. 13:587‐622.
   Marshall, K.W., Liu, A.F., Canales, J., Perahia, B., Jorgensen, B., Gantzos, R.D., Aguilar, B., Devaux, B., and Rothbard, J.B. 1994. Role of the polymorphic residues in HLA‐DR molecules in allele‐specific binding of peptide ligands. J. Immunol. 152:4946‐4957.
   McFarland, B.J. and Beeson, C. 2002. Binding interactions between peptides and proteins of the class II Major Histocompatibility Complex. Med. Res. Rev. 22:168‐203.
   Moutaftsi, M., Peters, B., Pasquetto, V., Tscharke, D.C., Sidney, J., Bui, H.H., Grey, H., and Sette, A. 2006. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)‐cell responses to vaccinia virus. Nat. Biotechnol. 24:817‐819.
   Nepom B.S., Nepom, G.T., Coleman, M., Kwok, W.W. 1996. Critical contribution of beta chain residue 57 in peptide binding ability of both HLA‐DR and ‐DQ molecules. Proc. Natl. Acad. Sci. U.S.A. 93:7202‐7206.
   Nielsen, M., Justesen, S., Lund, O., Lundegaard, C., and Buus, S. 2010a. NetMHCIIpan‐2.0—Improved pan‐specific HLA‐DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res. 6:9.
   Nielsen, M., Lund, O., Buus, S., and Lundegaard, C. 2010b. MHC Class II epitope predictive algorithms. Immunology 130:319‐328.
   Olsen, A.C., Pedersen, L.O., Hansen, A.S., Nissen, M.H., Olsen, M., Hansen, P.R., Holm, A., and Buus, S. 1994. A quantitative assay to measure the interaction between immunogenic peptides and purified class I major histocompatibility complex molecules. Eur. J. Immunol. 24:385‐392.
   Oseroff, C., Kos, F., Bui, H.H., Peters, B., Pasquetto, V., Glenn, J., Palmore, T., Sidney, J., Tscharke, D.C., Bennink, J.R., Southwood, S., Grey, H.M., Yewdell, J.W., and Sette, A. 2005. HLA class I‐restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. Proc. Natl. Acad. Sci. U.S.A. 102:13980‐13985.
   Oseroff, C., Peters, B., Pasquetto, V., Moutaftsi, M., Sidney, J., Panchanathan, V., Tscharke, D.C., Maillere, B., Grey, H., and Sette, A. 2008. Dissociation between epitope hierarchy and immunoprevalence in CD8 responses to vaccinia virus western reserve. J. Immunol. 180:7193‐7202.
   Oseroff, C., Sidney, J., Kotturi, M.F., Kolla, R., Alam, R., Broide, D.H., Wasserman, S.I., Weiskopf, D., McKinney, D.M., Chung, J.L., Petersen, A., Grey, H., Peters, B., and Sette, A. 2010. Molecular determinants of T cell epitope recognition to the common Timothy grass allergen. J. Immunol. 185:943‐955.
   O'Sullivan, D., Sidney, J., Appella, E., Walker, L., Phillips, L., Colon, S.M., Miles, C., Chesnut, R.W., and Sette, A. 1990. Characterization of the specificity of peptide binding to four DR haplotypes. J. Immunol. 149:1799‐1808.
   O'Sullivan, D., Arrhenius, T., Sidney, J., del Guercio, M‐F., Albertson, M., Wall, M., Oseroff, C., Southwood, S., Colon, S.M., Gaeta, F.C.A., and Sette, A. 1991. On the interaction of promiscuous antigenic peptides with different DR alleles: Identification of common structural motifs. J. Immunol. 147:2663‐2669.
   Panina‐Bordignon, P., Tan, A., Termijtelen, A., Demotz, S., Corradin, G., and Lanzavecchia, A. 1989. Universally immunogenic T cell epitopes: Promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur. J. Immunol. 19:2237‐2242.
   Parker, K.C., DiBrino, M., Hull, L., and Coligan, J.E. 1992. The β2‐micro‐globulin dissociation rate is an accurate measure of the stability of MHC class I heterotrimers and depends on which peptide is found. J. Immunol. 149:1896‐1904.
   Parker, K.C., Bednarek, M.A., and Coligan, J.E. 1994. Scheme for ranking potential HLA‐A2 binding peptides based on independent binding of individual peptide side‐chains. J. Immunol. 152:163‐175.
   Pasquetto, V., Bui, H.H., Giannino, R., Banh, C., Mirza, F., Sidney, J., Oseroff, C., Tscharke, D.C., Irvine, K., Bennink, J.R., Peters, B., Southwood, S., Cerundolo, V., Grey, H., Yewdell, J.W., and Sette, A. 2005. HLA‐A*0201, HLA‐A*1101, and HLA‐B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. J. Immunol. 175:5504‐5515.
   Peters, B., Bui, H.‐H., Frankild, S., Nielsen, M., Lundegaard, C., Kostem, E., Basch, D., Lamberth, K., Harndahl, M., Fleri, W., Wilson, S.S., Sidney, J., Lund, O., Buus, S., and Sette, A. 2006. A community resource benchmarking predictions of peptide binding to MHC‐I molecules. PLoS Comput. Biol. 2:e65.
   Pinilla, C., Appel, J.R., Blanc, P., and Houghten, R.A. 1992. Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. Biotechniques 13:901‐905.
   Rammensee, H.‐G., Friede, T., and Stevanovic, S. 1995. MHC ligands and peptide motifs: First listing. Immunogenetics 41:178‐228.
   Rammensee, H., Bachmann, J., Emmerich, N.P., Bachor, O.A., and Stevanovic, S. 1999. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics 50:213‐219.
   Reay, P.A., Wettstein, D.A., and Davis, M.M. 1992. pH dependence and exchange of high and low responder peptides binding to a class II MHC molecule. EMBO J. 11:2829‐2839.
   Rebai, N. and Malissen, B. 1983. Structural and genetic analyses of HLA class I molecules using monoclonal xenoantibodies. Tissue Antigens 22:107‐117.
   Roche, P.A. and Cresswell, P. 1991. High‐affinity binding of an influenza hemagglutinin‐derived peptide to purified HLA‐DR. J. Immunol. 144:1849‐1856.
   Rothbard, J.B. 1994. One size fits all. Curr. Biol. 4:653‐655.
   Rötzschke, O. and Falk, K. 1994. Origin, structure and motifs of naturally processed MHC class II ligands. Curr. Opin. Immunol. 6:45‐51.
   Ruppert, J., Sidney, J., Celis, E., Kubo, R.T., Grey, H.M., and Sette, A. 1993. Prominent role of secondary anchor residues in peptide binding to HLA‐A2.1 molecules. Cell 74:929‐937.
   Schumacher, T.N., Heemels, M.T., Neefjes, J.J., Kast, W.M., Melief, C.J., Ploegh, H.L. 1990. Direct binding of peptide to empty MHC Class I molecules on intact cells and in vitro. Cell 62:563‐567.
   Sette, A. and Grey, H.M. 1992. Chemistry of peptide interactions with MHC proteins. Curr. Opin. Immunol. 4:79‐86.
   Sette, A., Sidney, J., Albertson, M., Miles, C., Colon, S.M., Pedrazzini, T., Lamont, A.G., and Grey, H.M. 1990. A novel approach to the generation of high affinity class II binding peptides J. Immunol. 145:1809‐1813.
   Sette, A., Southwood, S., O'Sullivan, D., Gaeta, F.C.A., Sidney, J., and Grey, H.M. 1992. Effect of pH on MHC class II‐peptide interactions. J. Immunol. 148:844‐851.
   Sette, A., Sidney, J., Oseroff, C., del Guercio, M.‐F., Southwood, S., Arrhenius, T., Powell, M.F., Colon, S.M., Gaeta, F.C.A., and Grey, H.M. 1993. HLA DR4w4‐binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide‐DR interactions. J. Immunol. 151:3163‐3170.
   Sette, A., Sidney, J., del Guercio, M‐F., Southwood, S., Ruppert, J., Dahlberg, C., Grey, H.M., and Kubo, R.T. 1994. Peptide binding to the most frequent HLA‐A class I alleles measured by quantitative molecular binding assays. Mol. Immunol. 31:813‐822.
   Sidney, J., Oseroff, C., Southwood, S., Wall, M., Ishioka, G., Koning, F., and Sette, A. 1992. DRB1*0301 molecules recognize a structural motif distinct from the one recognized by most DRb1 alleles. J. Immunol. 149:2634‐2640.
   Sidney, J., Oseroff, C., del Guercio, M‐F., Southwood, S., Krieger, J.I., Ishioka, G.Y., Sakaguchi, K., Appella, E., and Sette, A. 1994. Definition of a DQ3.1‐specific binding motif. J. Immunol. 152:4516‐4525.
   Sidney, J., del Guercio, M.‐F., Southwood, S., Engelhard, V.S., Apella, E., Rammensee, H.G., Falk, K., Rötzschke, O., Takiguchi, M., Kubo, R.T., Grey, H.M., and Sette, A. 1995. Several HLA alleles share overlapping peptide specificities. J. Immunol. 154:247‐259.
   Sidney, J., Grey, H.M., Southwood, S., Celis, E., Wentworth, P.A., del Guercio, M.‐F., Kubo, R.T., Chesnut, R.W., and Sette, A. 1996a. Definition of an HLA‐A3‐like supermotif demonstrates the overlapping peptide binding repertoires of common HLA molecules. Hum. Immunol. 45:79‐93.
   Sidney, J., Southwood, S., del Guercio, M.‐F., Grey, H.M., Chesnut, R.W., Kubo, R.T., and Sette, A. 1996b. Specificity and degeneracy in peptide binding to HLA‐B7‐like class I molecules. J. Immunol. 157:3480‐3490.
   Sidney, J., Southwood, S., Pasquetto, V., and Sette, A. 2003. Simultaneous prediction of binding capacity for multiple molecules of the HLA B44‐supertype. J. Immunol. 171:5964‐5974.
   Sidney, J., Peters, B., Moore, C., Pencille, T.J., Ngo, S., Masterman, K.A., Asabe, S., Pinilla, C., Chisari, F.V., and Sette, A. 2007. Characterization of the peptide‐binding specificity of the chimpanzee class I alleles A*0301 and A*0401 using a combinatorial peptide library. Immunogenetics 59:745‐751.
   Sidney, J., Assarsson, E., Moore, C., Ngo, S., Pinilla, C., Sette, A., and Peters, B. 2008a. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 4:2.
   Sidney, J., Peters, B., Frahm, N., Brander, C., and Sette, A. 2008b. HLA class I supertypes: A revised and updated classification. BMC Immunol. 9:1.
   Sidney, J., Steen, A., Moore, C., Ngo, S., Chung, J., Peters, B., and Sette, A. 2010a. Divergent motifs but overlapping binding repertoires of six HLA‐DQ molecules frequently expressed in the worldwide human population. J. Immunol. 185:4189‐4198.
   Sidney, J., Steen, A., Moore, C., Ngo, S., Chung, J., Peters, B., and Sette, A. 2010b. Five HLA‐DP molecules frequently expressed in the worldwide human population share a common HLA supertypic binding specificity. J. Immunol. 184:2492‐2503.
   Sinigaglia, F. and Hammer, J. 1994. Defining rules for the peptide‐MHC class II interaction. Curr. Opin. Immunol. 6:52‐56.
   Sinigaglia, F., Guttinger, M., Kilgus, J., Doran, D.M., Matile, H., Etlinger, H., Trzeciak, A., Gillessen, D., and Pink, J.R.L. 1988. A malaria T‐cell epitope recognized in association with most mouse and human MHC class II molecules. Nature 336:778‐780.
   Southwood, S., Sidney, J., Kondo, A., del Guercio, M.‐F., Appella, E., Hoffman, S., Kubo, R.T., Chesnut, R.W., Grey, H.M., and Sette, A. 1998. Several common HLA‐DR types share largely overlapping peptide binding repertoires. J. Immunol. 160:3363‐3373.
   Stern, L.J. and Wiley, D.C. 1994. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2:245‐251.
   Stryhn, A., Pedersen, L.O., Romme, T., Holm, C.B., Holm, A., and Buus, S. 1996. Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: Quantitation by peptide libraries and improved prediction of binding. Eur. J. Immunol. 26:1911‐1918.
   Sylvester‐Hvid, C., Kristensen, N., Blicher, T., Ferre, H., Lauemoller, S.L., Wolf, X.A., Lamberth, K., Nissen, M.H., Pedersen, L.O., and Buus, S. 2002. Establishment of a quantitative ELISA capable of determining peptide: MHC class I interaction. Tissue Antigens 59:251‐258.
   Sylvester‐Hvid, C., Nielsen, M., Lamberth, K., Roder, G., Justesen, S., Lundegaard, C., Worning, P., Thomadsen, H., Lund, O., Brunak, S., and Buus, S. 2004. SARS CTL vaccine candidates: HLA supertype‐, genome‐wide scanning and biochemical validation. Tissue Antigens 63:395‐400.
   Townsend, A., Elliott, T., Cerundolo, V., Foster, L., Barber, B., and Tse, A. 1990. Assembly of MHC class I molecules analyzed in vitro. Cell 62:285‐295.
   Udaka, K., Wiesmuller, K.H., Kienle, S., Jung, G., and Walden, P. 1995. Decrypting the structure of major histocompatibility complex class I‐restricted cytotoxic T lymphocyte epitopes with complex peptide libraries. J. Exp. Med. 181:2097‐2108.
   Udaka, K., Wiesmuller, K.H., Kienle, S., Jung, G., Tamamura, H., Yamagishi, H., Okumura, K., Walden, P., Suto, T., and Kawasaki, T. 2000. An automated prediction of MHC class I‐binding peptides based on positional scanning with peptide libraries. Immunogenetics 51:816‐828.
   van Bleek, G.M. and Nathenson, S.G. 1990. Isolation of an endogenously processed immunodominant viral peptide from the class I H‐2Kb molecule. Nature 348:213‐216.
   Vita, R., Zarebski, L., Greenbaum, J. A., Emami, H., Hoof, I., Salimi, N., Damle, R., Sette, A., and Peters, B. 2010. The immune epitope database 2.0. Nucleic Acids Res. 38:D854‐D862.
   Wang, P., Sidney, J., Dow, C., Mothe, B., Sette, A., and Peters, B. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4:e10048.
   Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., and Peters, B. 2010. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11:568.
   Wang, P., Sidney, J., Sette, A., and Peters, B. 2011. A computational pipeline to generate MHC binding motifs. Immunome Res. 7:3.
   Weiskopf, D., Yauch, L.E., Angelo, M.A., John, D.V., Greenbaum, J.A., Sidney, J., Kolla, R.V., De Silva, A.D., de Silva, A.M., Grey, H., Peters, B., Shresta, S., and Sette, A. 2011. Insights into HLA‐restricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design. J. Immunol. 187:4268‐4279.
   Wulf, M., Hoehn, P., and Trinder, P. 2009. Identification of human MHC class I binding peptides using the iTOPIA‐epitope discovery system. Methods Mol. Biol. 524:361‐367.
Key References
   Buchli et al., 2004, 2005. See above.
  Two papers from William Hildebrand's group demonstrating the use of fluorescence polarization techniques and soluble MHC for developing sensitive binding assays. Willie's group has done pioneering work in developing expression systems for the production of soluble MHC molecules.
   Harndahl et al. 2009, 2011. See above
  Soren Buus has been a leader for over two decades in the MHC binding field, and the steady stream of excellent work from his laboratory is always creative, interesting and definitely relevant to the present context. His work covers a number of novel assay approaches, as well as related bioinformatics‐based tools.
   Justesen et al. 2009. See above.
  A well‐written review of antigen processing, which gives an appropriate backdrop for understanding MHC‐peptide binding.
   Germain and Margulies, 1993. See above.
  A recent effort towards the classification of HLA Class II binding specificities into supertypes, defining sets of molecules with shared or largely overlapping repertoires.
   Greenbaum et al., 2011. See above.
  Very detailed and clearly presented review of the structural aspects of MHC function.
   Madden, 1995. See above.
  Very detailed review of peptide binding to MHC Class II.
   McFarland and Beeson, 2002. See above.
  A large listing of MHC‐peptide binding motifs, mostly as defined using MHC‐peptide elution methodology, is available at the web site described in these references.
   Rammensee et al., 1995, 1999. See above.
  A recent analysis and compilation of HLA Class I binding specificities to define supertypes describing sets of molecules with shared or largely overlapping repertoires.
   Sidney et al., 2008b. See above.
Internet Resources
  http://www.ebi.ac.uk/imgt/hla/
  The ImMunoGeneTics Database: The IMGT/HLA Database, initiated by Marie‐Paule Lefranc, provides a specialist database for sequences of the human major histocompatibility complex (HLA) and includes the official sequences for the WHO Nomenclature Committee For Factors of the HLA System. The IMGT/HLA Database is part of the international ImMunoGeneTics project (IMGT), and is hosted by the European Bioinformatics Institute (EBI).
  http://www‐bimas.cit.nih.gov/molbio/hla_bind/
  Kenneth Parker provides predictions for peptide binding to a number of different HLA Class I alleles based on pioneering matrices published in 1994.
  http://www.syfpeithi.de/
  SYFPEITHI is a pioneering database developed under the direction of Hans‐Georg Rammensee. It comprises more than 7000 peptide sequences known to bind Class I and Class II MHC molecules. The entries are compiled from published reports only.
  http://www.ashi‐hla.org
  This is the Web site for the American Society of Histocompatibility and Immunogenetics.
  http://www.iedb.org
  The Immune Epitope Database and Analysis Resource (IEDB) contains data related to antibody and T cell epitopes for humans, nonhuman primates, rodents, and other animal species. Curation of peptidic and nonpeptidic epitope data relating to all infectious diseases (including NIAID Category A, B, and C priority pathogens and NIAID Emerging and Re‐emerging infectious diseases), allergens, autoimmune diseases, and transplant/alloantigens is current and constantly being updated. The database also contains MHC binding data from a variety of different antigenic sources and immune epitope data from the FIMM (Brusic), HLA Ligand (Hildebrand), TopBank (Sette), and MHC binding (Buus) databases.
  http://www.cbs.dtu.dk/services/NetMHC/
  The NetMHC 3.2 server, developed by Morten Nielsen, Soren Buus, and co‐workers, and hosted by the Center for Biological Sequence Analysis at the Technical University of Denmark, predicts binding of peptides to a number of different HLA alleles using artificial neural networks (ANNs) and weight matrices. Also available is a graphic MHC‐peptide motif viewer.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library