Peptide Induction of Surface Expression of Class I MHC

Ted Hansen1, Nancy Myers1

1 Washington University School of Medicine, St. Louis, Missouri
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 18.11
DOI:  10.1002/0471142735.im1811s57
Online Posting Date:  November, 2003
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit describes a method for comparing the relative binding of different peptides to the same MHC class I (MHC‐I) molecule using live cells. Live cells expressing suboptimally loaded MHC‐I proteins are incubated with medium containing diluted amounts of synthetic peptides to be tested for binding to class I. After overnight incubation with peptide, surface class I expression is monitored by flow cytometry using an allele‐specific MAb. Relative binding affinity of peptide reliably correlates with the amount of surface induction of the class I molecule to which it specifically binds. The mechanistic basis of this assay is that surface MHC‐I molecules become conformationally unstable shortly after peptide dissociation. However, the binding of an exogenous peptide can stabilize the surface class I molecule, prevent conformational instability, and thus increase class I surface expression in an allele‐specific manner.

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Peptide Binding to Class I Molecules as Measured by Surface Induction of Class I Expression on Live Cells Following Culture with Peptides
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Peptide Binding to Class I Molecules as Measured by Surface Induction of Class I Expression on Live Cells Following Culture with Peptides

  • Cells to be tested (e.g. T2/A2.1 TAP‐deficient cells expressing HLA‐A2, ATCC #CRL‐1992; also see Critical Parameters)
  • Complete DMEM or RPMI cell culture medium containing 10% FBS ( appendix 22)
  • Peptide(s) of interest (see Critical Parameters)
  • Fluorescently labeled MAb specific for MHC class I molecule of interest, suitable for flow cytometry (see, e.g., unit 5.3; also see Robinson et al., )
  • Refrigerated centrifuge with inserts for tissue culture tubes and 96‐well plates
  • 15 × 60–mm, 15 × 100–mm, 20 × 100–mm, or other size non–tissue culture treated petri dishes, flasks, or multiwell plates
  • 96‐well round‐bottom microtiter plate
  • Additional reagents and equipment for counting viable cells ( appendix 3B), and flow cytometry (Chapter 5; also see Robinson et al., )
NOTE: All solutions and equipment coming into contact with living cells must be sterile, and aseptic technique should be used accordingly.
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Anderson, K.S., Alexander, J., Wei, M., and Cresswell, P. 1993. Intracellular transport of class I MHC molecules in antigen processing mutant cell lines. J. Immunol. 151:3407‐3419.
   Barnden, M.J., Purcell, A.W., Gorman, J.J., and McCluskey, J. 2000. Tapasin‐mediated retention and optimization of peptide ligands during the assembly of class I molecules. J. Immunol. 165:322‐330.
   Bikoff, E.K., Jaffe, L., Ribaudo, R.K., Otten, G.R., Germain, R.N., and Robertson, E.J. 1991. MHC class I surface expression in embryo‐derived cell lines inducible with peptide or interferon. Nature 354:235‐238.
   Bluestone, J.A., Jameson, S., Miller, S., and Dick, R. 1992. Peptide‐induced conformational changes in class I heavy chains alter major histocompatibility complex recognition. J. Exp. Med. 176:1757‐1761.
   Carbone, F.R. and Bevan, M.J. 1989. Induction of ovalbumin‐specific cyotoxic T cells by in vivo peptide immunization. J. Exp. Med. 169:603‐612.
   Catipovic, B., Dal Porto, J., Mage, M., Johansen, T.E., and Schneck, J.P. 1992. Major histocompatibility complex conformational epitopes are peptide specific. J. Exp. Med. 176:1611‐1618.
   Chiu, N.M., Chun, T., Fay, M., Mandal, M., and Wang, C.R. 1999. The majority of H2‐M3 is retained intracellularly in a peptide‐receptive state and traffics to the cell surface in the presence of N‐formylated peptides. J. Exp. Med. 190:423‐434.
   Day, P.M., Yewdell, J.W., Porgador, A., Germain, R.N., and Bennink, J.R. 1997. Direct delivery of exogenous MHC class I molecule‐binding oligopeptides to the endoplasmic reticulum of viable cells. Proc. Natl. Acad. Sci. U.S.A. 94:8064‐8069.
   De Silva, A.D., Boesteanu, A., Song, R., Nagy, N., Harhaj, E., Harding, C.V., and Joyce, S. 1999. Thermolabile H‐2Kb molecules expressed by transporter associated with antigen processing‐deficient RMA‐S cells are occupied by low‐affinity peptides. J. Immunol. 163:4413‐4420.
   Grandea, A.G. III, Golovina, T.N., Hamilton, S.E., Sriram, V., Spies, T., Brutkiewicz, R.R., Harty, J.T., Eisenlohr, L.C., and Van Kaer, L. 2000. Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice. Immunity. 13:213‐222.
   Grant, G.A. (ed.) 2003 Synthetic Peptides: A User's Guide, 2nd ed. Oxford University Press, New York.
   Henderson, R.A., Michel, H., Sakaguchi, K., Shabanowitz, J., Appella, E., Hunt, D.F., and Engelhard, V.H. 1992 HLA‐A2.1‐associated peptides from a mutant cell line: A second pathway of antigen presentation. Science 255:1264‐1266.
   Lie, W.R., Myers, N.B., Gorka, J., Rubocki, R.J., Connolly, J.M., and Hansen, T.H. 1990. Peptide ligand‐induced conformation and surface expression of the Ld class I MHC molecule. Nature 344:439‐441.
   Lie, W.R., Myers, N.B., Connolly, J.M., Gorka, J., Lee, D.R., and Hansen, T.H. 1991. The specific binding of peptide ligand to Ld class I major histocompatibility complex molecules determines their antigenic structure. J. Exp. Med. 173:449‐459.
   Ljunggren, H.G., Stam, N.J., Ohlen, C., Neefjes, J.J., Hoglund, P., Heemels, M.T., Bastin, J., Schumacher, T.N., Townsend, A., Karre, K. et al. 1990. Empty MHC class I molecules come out in the cold. Nature 346:476‐480.
   Lurquin, C., Van Pel, B., Mariame, E., De Plaen, J.P., Szikora, C., Janssens, M.J., Reddehase, J., Lejeune, J., and Boon, T. 1989. Structure of the gene of tum– transplantation antigen P91A: The mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58:293‐303.
   Lybarger, L., Yu, Y.Y., Chun, T., Wang, C.R., Grandea, A.G. III, Van Kaer, L., and Hansen, T.H. 2001. Tapasin enhances peptide‐induced expression of H2‐M3 molecules, but is not required for the retention of open conformers. J. Immunol. 167:2097‐2105.
   Myers, N.B., Harris, M.R., Connolly, J.M., Lybarger, L., Yu, Y.Y., and Hansen, T.H. 2000. Kb, Kd, and Ld molecules share common tapasin dependencies as determined using a novel epitope tag. J. Immunol. 165:5656‐5663.
   Nuchtern, J.G., Bonifacino, J.S., Biddison, W.E., and Klausner, R.D. 1989. Brefeldin A implicates egress from endoplasmic reticulum in class I restricted antigen presentation. Nature 339:223‐226.
   Ortiz‐Navarrete, V. and Hammerling, G.J. 1991. Surface appearance and instability of empty H‐2 class I molecules under physiological conditions. Proc. Natl. Acad. Sci. U.S.A. 88:3594‐3597.
   Otten, G.R., Bikoff, E., Ribaudo, R.K., Kozlowski, S., Margulies, D.H., and Germain, R.N. 1992. Peptide and beta 2‐microglobulin regulation of cell surface MHC class I conformation and expression. J. Immunol. 148:3723‐3732.
   Pamer, E. and Cresswell, P. 1998. Mechanisms of MHC class I—restricted antigen processing. Annu. Rev. Immunol. 16:323‐358.
   Porgador, A., Yewdell, J.W., Deng, Y., Bennink, J.R., and Germain, R.N. 1997. Localization, quantitation, and in situ detection of specific peptide–MHC class I complexes using a monoclonal antibody. Immunity 6:715‐726.
   Robinson, J.P., Darzynkiewicz, Z., Dean, P.N., Hibbs, A.R., Orfao, A., Rabinovitch, P.S., and Wheeless, L.L. (eds.) 2003 Current Protocols in Cytometry. John Wiley & Sons, Hoboken, N.J.
   Schumacher, T.N., Heemels, M.T., Neefjes, J.J., Kast, W.M., Melief, C.J., and Ploegh, H.L. 1990. Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell 62:563‐567.
   Smith, J.D., Lie, W.R., Gorka, J., Myers, N.B., and Hansen, T.H. 1992. Extensive peptide ligand exchange by surface class I major histocompatibility complex molecules independent of exogenous beta 2‐microglobulin. Proc. Natl. Acad. Sci. U.S.A. 89:7767‐7771.
   Solheim, J.C., Carreno, B.M., Smith, J.D., Gorka, J., Myers, N.B., Wen, Z., Martinko, J.M., Lee, D.R., and Hansen, T.H. 1993. Binding of peptides lacking consensus anchor residue alters H‐2Ld serologic recognition. J. Immunol. 151:5387‐5397.
   Spies, T., Bresnahan, M., Bahram, S., Arnold, D., Blanck, G., Mellins, E., Pious, D., and DeMars, R. 1990. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 348:744‐747.
   Townsend, A., Ohlen, C., Bastin, J., Ljunggren, H.G., Foster, L., and Karre, K. 1989. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340:443‐448.
   Udaka, K., Tsomides, T.J., and Eisen, H.N. 1992. A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I MHC protein. Cell 69:989‐998.
   Yewdell, J.W. and Bennink, J.R. 1989. Brefeldin A specifically inhibits presentation of protein antigens to cytotoxic T lymphocytes. Science 244:1072‐1075.
   Yewdell, J.W. and Bennink, J.R. 2001. Cut and trim: Generating MHC class I peptide ligands. Curr. Opin. Immunol. 13:13‐18.
   Yu, Y.Y., Myers, N.B., Hilbert, C.M., Harris, M.R., Balendiran, G.K., and Hansen, T.H. 1999 Definition and transfer of a serological epitope specific for peptide‐empty forms of MHC class I. Int. Immunol. 11:1897‐1906.
PDF or HTML at Wiley Online Library