Competition‐Based Cellular Peptide Binding Assay for HLA Class I

Jan H. Kessler1, Willemien E. Benckhuijsen1, Tuna Mutis1, Cornelis J.M. Melief1, Sjoerd H. van der Burg1, Jan W. Drijfhout1

1 Leiden University Medical Center, Leiden
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 18.12
DOI:  10.1002/0471142735.im1812s61
Online Posting Date:  September, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes a competition assay to determine binding of unlabeled test peptides to thirteen of the most prevalent HLA class I molecules. It uses cells expressing the HLA class I molecule of interest on their surface, fluorescently labeled reference peptides, and unlabeled test peptides. Cells of interest are stripped from their natural HLA‐bound peptides using acid treatment and subsequently incubated with a mixture of labeled reference peptide and titrating concentrations of test peptide. Subsequently, FACS analysis is performed to determine the amount of bound reference peptide, which is a measure of the ability of test peptide to compete for binding to HLA. The assay provides IC50 values for binding of test peptides to HLA molecules. It can be performed in a normally equipped cellular laboratory, requires no additional equipment besides a flow cytometer (FACS), and is relatively easy to perform. Assay‐specific parameters for several HLA alleles are provided.

Keywords: HLA; peptide binding; synthetic peptide; FACS analysis; fluorescence; cellular assay

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Competition‐Based Cellular Peptide Binding Assay for HLA Class I
  • Support Protocol 1: Synthesis, Analysis, and Quantification of Fluorescent Reference Peptides
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Competition‐Based Cellular Peptide Binding Assay for HLA Class I

  Materials
  • Test peptide in PBS ( appendix 2A)
  • Positive‐control peptides in PBS (Table 18.12.2)
  • PBS ( appendix 2A)
  • Fluorescent reference (Fl) peptide in PBS (see protocol 2 and Strategic Planning)
  • Cells (see Strategic Planning and Table 18.12.1) in flasks
  • Elution buffer (see recipe)
  • IMDM‐2 ( appendix 2A) with and without 2 µg/ml β 2M (see recipe)
  • Ice‐cold PBS ( appendix 2A) containing 0.5% (w/v) BSA
  • PBS ( appendix 2A) containing 1% (w/v) paraformaldehyde (PFA)
  • 96‐well V‐bottom microtiter plates
  • Multichannel pipettor
  • 15‐ml centrifuge tubes
  • Centrifuge with rotors for tubes and microtiter plates
  • Reagent reservoir
  • FACScan flow cytometer (or equivalent instrument) and appropriate tubes
  • Software for nonlinear regression analysis (e.g., CurveExpert 1.3, SPSS Science Software)
  • Additional reagents and equipment for counting cells ( appendix 3A)
    Table 8.2.2   Materials   Positive‐Control Peptides c and Their IC 50 Values   Positive‐Control Peptides and Their IC 50 Values

    HLA class I allele d Peptide sequence Origin IC 50 (µM) Reference
    A1 (A*0101) YLEPAIAKY Consensus sequence 0.2 Sette et al. ( )
    A2 (A*0201) FLPSDFFPSV HBV cAg 18‐27 0.5 Bertoletti et al. ( )
    YIGEVLVSV mHag HA‐2 3.5 den Haan et al. ( )
    A3 (A*0301) KVFPCALINK Consensus sequence 0.7 Sette et al. ( )
    QVPLRPMTYK HIV‐1nef 73‐82 0.2 Koenig et al. ( )
    KQSSKALQR BCR‐ABL b3a2 2.2 Bocchia et al. ( )
    A11 (A*1101) QVPLRPMTYK HIV‐1nef 73‐82 2.0 Koenig et al. ( )
    KQSSKALQR BCR‐ABL b3a2 6.7 Bocchia et al. ( )
    A24 (A*2402) RYLKDQQLL HIV‐1env gp41 583‐591 1.8 Dai et al. ( )
    AYIDNYNKF Consensus sequence 0.6 Kast et al. ( )
    A68 (A*6801) KTGGPIYKR Influenza A NP 91‐99 1.3 Guo et al. ( )
    B7 (B*0702) APAPAPSWPL Human p53 84‐93 0.5 Not published
    SPSVDKARAEL Human SMCY 950‐960 0.7 Wang et al. ( )
    B8 (B*0801) FLRGRAYGL EBNA‐3 339‐347 0.2 Burrows et al. ( )
    GFKQSSKAL BCR‐ABL b3a2 fusion region 1.5 Bocchia et al. ( )
    B14 (B*1402) ERYLKDQQL HIV‐1env gp41 584‐592 7.5 Johnson et al. ( )
    B35 (B*3501) NPDIVIYQY HIV‐1 RT 330‐338 1.2 Sipsas et al. ( )
    B60 (B*4001) KESTLHLVL Ubiquitin 63‐71 1.9 Falk et al. ( )
    B61 (B*4002) GEFGGFGSV Histone acetyltransferase 127‐135 0.2 Falk et al. ( )
    GEFVDLYV 40S ribosomal protein S21 6‐13 0.3 Falk et al. ( )
    B62 (B*1501) YLGEFSITY 40S ribosomal protein S15 114‐122 0.6 Falk et al. ( )

     cA positive‐control peptide is defined here as one which exhibits good binding for the particular HLA molecule being investigated.
     dRefer to appendix 1D for nomenclature.

Support Protocol 1: Synthesis, Analysis, and Quantification of Fluorescent Reference Peptides

  Materials
  • Sephadex G‐10
  • 3:7 and 9:1 acetic acid/water
  • 1.0 M Tris·Cl, pH 9.5 ( appendix 2A; store at 4°C)
  • Acetonitrile
  • Synthetic reference peptide containing Cys at the position where a Cys(Fl) is required (Table 18.12.1 and Table 18.12.4)
  • 5‐(iodoacetamido)fluorescein (Fluka Chemie AG or Molecular Probes)
  • Acetic acid
  • Mobile phase for reversed‐phase HPLC
  • 200 mM sodium phosphate buffer, pH 7.5 ( appendix 2A)
  • ∼1.7 × 12–cm disposable column (e.g., Bio‐Rad Econo‐Pac)
  • Additional reagents and equipment for reversed‐phase HPLC (Henzel and Stults, ) and mass spectroscopy (Coligan et al., )
    Table 8.2.4   MaterialsMolecular Masses of Fluorescent Reference Peptides

    HLA class I allele f Fl peptide g Expected mass (monoisotopic) Expected mass (average)
    A1 (A*0101) YLEPAXAKY 1443.569 1444.57
    A2 (A*0201) FLPSDXFPSV 1497.579 1498.62
    A3 (A*0301) KVFPXALINK 1518.721 1519.77
    A11 (A*1101) KVFPXALINK 1518.721 1519.77
    A24 (A*2402) RYLKXQQLL 1550.722 1551.78
    A68 (A*6801) KTGGPIXKR 1345.612 1346.52
    B7 (B*0702) APAPAPXWPL 1408.579 1409.58
    B8 (B*0801) FLRGRAXGL 1378.612 1379.55
    B14 (B*1402) DRYIHAXLL 1489.633 1490.65
    B35 (B*3501) NPDIVXYQY 1500.554 1501.58
    B60 (B*4001) KESTXHLVL 1415.606 1416.56
    B61 (B*4002) GEFGGXGSV 1198.391 1199.21
    B62 (B*1501) YLGEFSXTY 1468.516 1469.54

     fRefer to appendix 1S for nomenclature.
     gX is the Cys(Fl) moiety.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Bertoletti, A., Chisari, F.V., Penna, A., Guilhot, S., Galati, L., Missale, G., Fowler, P., Schlicht, H.J., Vitiello, A., and Chesnut, R.C. 1993. Definition of a minimal optimal cytotoxic T‐cell epitope within the hepatitis B virus nucleocapsid protein. J. Virol. 67:2376‐2380.
   Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S., Strominger, J.L., and Wiley, D.C. 1987a. Structure of the human class I histocompatibility antigen, HLA‐A2. Nature 329:506‐512.
   Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S., Strominger, J.L., and Wiley, D.C. 1987b. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512‐518.
   Bocchia, M., Wentworth, P.A., Southwood, S., Sidney, J., McGraw, K., Scheinberg, D.A., and Sette, A. 1995. Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood 85:2680‐2684.
   Bodmer, H.C., Bastin, J.M., Askonas, B.A., and Townsend, A.R. 1989. Influenza‐specific cytotoxic T‐cell recognition is inhibited by peptides unrelated in both sequence and MHC restriction. Immunology 66:163‐169.
   Bremers, A.J., van der Burg, S.H., Kuppen, P.J., Kast, W.M., van de Velde, C.J., and Melief, C.J.M. 1995. The use of Epstein‐Barr virus‐transformed B lymphocyte cell lines in a peptide‐reconstitution assay: Identification of CEA‐related HLA‐A*0301‐restricted potential cytotoxic T‐lymphocyte epitopes. J. Immunother. Emphasis Tumor Immunol. 18:77‐85.
   Burrows, S.R., Sculley, T.B., Misko, I.S., Schmidt, C., and Moss, D.J. 1990. An Epstein‐Barr virus‐specific cytotoxic T cell epitope in EBV nuclear antigen 3 (EBNA 3). J. Exp. Med. 171:345‐349.
   Cerundolo, V., Elliott, T., Elvin, J., Bastin, J., Rammensee, H.G., and Townsend, A. 1991. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur. J. Immunol. 21:2069‐2075.
   Coligan, J.E., Dunn, B.M., Speicher, D.W., Wingfield, P.T. (eds.) 2004. Mass spectrometry. In Current Protocols in Protein Science, Chapter 16. John Wiley & Sons, Hoboken, N.J.
   Dai, L.C., West, K., Littaua, R., Takahashi, K., and Ennis, F.A. 1992. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8+ A24‐restricted cytotoxic T lymphocytes. J. Virol. 66:3151‐3154.
   den Haan, J.M., Sherman, N.E., Blokland, E., Huczko, E., Koning, F., Drijfhout, J.W., Skipper, J., Shabanowitz, J., Hunt, D.F., and Engelhard, V.H. 1995. Identification of a graft versus host disease‐associated human minor histocompatibility antigen. Science 268:1476‐1480.
   Dillner, J. 1994. Enzyme immunoassay detection of induction of MHC class I expression by synthetic peptides from the E6 and E7 regions of human papillomavirus type 16. J. Immunol. Methods 167:195‐205.
   Elvin, J., Cerundolo, V., Elliott, T., and Townsend, A. 1991. A quantitative assay of peptide‐dependent class I assembly. Eur. J. Immunol. 21:2025‐2031.
   Falk, K., Rotzschke, O., Takiguchi, M., Gnau, V., Stevanovic, S., Jung, G., and Rammensee, H.G. 1995. Peptide motifs of HLA‐B58, B60, B61, and B62 molecules. Immunogenetics 41:165‐168.
   Guo, H.C., Jardetzky, T.S., Garrett, T.P., Lane, W.S., Strominger, J.L., and Wiley, D.C. 1992. Different length peptides bind to HLA‐Aw68 similarly at their ends but bulge out in the middle. Nature 360:364‐366.
   Henzel, W.J. and Stults, J.T. 2001. Reversed‐phase isolation of peptides. In Current Protocols in Protein Science (J.E. Coligan, B.M. Dunn, D.W. Speicher, and, P.T. Wingfield, eds.), pp. 11.6.1‐11.6.16. John Wiley & Sons, New York.
   Johnson, R.P., Trocha, A., Buchanan, T.M., and Walker, B.D. 1992. Identification of overlapping HLA class I‐restricted cytotoxic T cell epitopes in a conserved region of the human immunodeficiency virus type 1 envelope glycoprotein: Definition of minimum epitopes and analysis of the effects of sequence variation. J. Exp. Med. 175:961‐971.
   Kast, W.M., Brandt, R.M., Sidney, J., Drijfhout, J.W., Kubo, R.T., Grey, H.M., Melief, C.J.M., and Sette, A. 1994. Role of HLA‐A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J. Immunol. 152:3904‐3912.
   Kessler, J.H., Mommaas, B., Mutis, T., Huijbers, I., Vissers, D., Benckhuijsen, W.E., Schreuder, G.M.Th., Offringa, R., Goulmy, E., Melief, C.J.M., van der Burg, S.H. and Drijfhout, J.W. 2003. Competition‐based cellular assay for 13 prevalent HLA class I alleles using fluorescein‐labeled synthetic peptides. Hum. Immunol. 64:245‐255.
   Koenig, S., Fuerst, T.R., Wood, L.V., Woods, R.M., Suzich, J.A., Jones, G.M., de la Cruz, V., Davey, R.T., Jr., Venkatesan, S., and Moss, B. 1990. Mapping the fine specificity of a cytolytic T cell response to HIV‐1 nef protein. J. Immunol. 145:127‐135.
   Ljunggren, H.G., Stam, N.J., Ohlen, C., Neefjes, J.J., Hoglund, P., Heemels, M.T., Bastin, J., Schumacher, T.N., Townsend, A., and Karre, K. 1990. Empty MHC class I molecules come out in the cold. Nature 346:476‐480.
   Nijman, H.W., Houbiers, J.G., Vierboom, M.P., van der Burg, S.H., Drijfhout, J.W., D'Amaro, J., Kenemans, P., Melief, C.J.M., and Kast, W.M. 1993. Identification of peptide sequences that potentially trigger HLA‐A2.1‐restricted cytotoxic T lymphocytes. Eur. J. Immunol. 23:1215‐1219.
   Ottenhoff, T.H.M., Geluk, A., Toebes, M., Benckhuijsen, W.E., van Meijgaarden, K.E., and Drijfhout, J.W. 1997. A sensitive fluorometric assay for quantitatively measuring specific peptide binding to HLA class I and class II molecules. J. Immunol. Methods 200:89‐97.
   Sette, A., Sidney, J., del Guercio, M.F., Southwood, S., Ruppert, J., Dahlberg, C., Grey, H.M., and Kubo, R.T. 1994. Peptide binding to the most frequent HLA‐A class I alleles measured by quantitative molecular binding assays. Mol. Immunol. 31:813‐822.
   Sipsas, N.V., Kalams, S.A., Trocha, A., He, S., Blattner, W.A., Walker, B.D., and Johnson, R.P. 1997. Identification of type‐specific cytotoxic T lymphocyte responses to homologous viral proteins in laboratory workers accidentally infected with HIV‐1. J. Clin. Invest. 99:752‐762.
   Storkus, W.J., Zeh, H.J., III, Salter, R.D., and Lotze, M.T. 1993. Identification of T‐cell epitopes: Rapid isolation of class I‐presented peptides from viable cells by mild acid elution. J. Immunother. 14:94‐103.
   Sugawara, S., Abo, T., and Kumagai, K. 1987. A simple method to eliminate the antigenicity of surface class I MHC molecules from the membrane of viable cells by acid treatment at pH 3. J. Immunol. Methods 100:83‐90.
   Tan, T.L., Geluk, A., Toebes, M., Ottenhoff, T.H.M., and Drijfhout, J.W. 1997. A novel, highly efficient peptide‐HLA class I binding assay using unfolded heavy chain molecules: Identification of HIV‐1 derived peptides that bind to HLA‐A*0201 and HLA‐A*0301. J. Immunol. Methods 205:201‐209.
   Townsend, A., Elliott, T., Cerundolo, V., Foster, L., Barber, B., and Tse, A. 1990. Assembly of MHC class I molecules analyzed in vitro. Cell 62:285‐295.
   van der Burg, S.H., Ras, E., Drijfhout, J.W., Benckhuijsen, W.E., Bremers, A.J., Melief, C.J.M., and Kast, W.M. 1995. An HLA class I peptide‐binding assay based on competition for binding to class I molecules on intact human B cells. Identification of conserved HIV‐1 polymerase peptides binding to HLA‐A*0301. Hum. Immunol. 44:189‐198.
   Wang, W., Meadows, L.R., den Haan, J.M., Sherman, N.E., Chen, Y., Blokland, E., Shabanowitz, J., Agulnik, A.I., Hendrickson, R.C., and Bishop, C.E., 1995. Human H‐Y: A male‐specific histocompatibility antigen derived from the SMCY protein. Science 269:1588‐1590.
   Zeh, H.J., III, Leder, G.H., Lotze, M.T., Salter, R.D., Tector, M., Stuber, G., Modrow, S., and Storkus, W.J. 1994. Flow‐cytometric determination of peptide‐class I complex formation. Identification of p53 peptides that bind to HLA‐A2. Hum. Immunol. 39:79‐86.
Internet Resources
   http://www.ihwg.org
  Information on the availability and ordering of the B cell lines can be obtained via the home page of the International Histocompatibility Workshop.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library