Cecal Ligation and Puncture

Alex G. Cuenca1, Matthew J. Delano1, Kindra M. Kelly‐Scumpia1, Lyle L. Moldawer1, Philip A. Efron1

1 University of Florida College of Medicine, Gainesville, Florida
Publication Name:  Current Protocols in Immunology
Unit Number:  Unit 19.13
DOI:  10.1002/0471142735.im1913s91
Online Posting Date:  November, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The cecum contains a high concentration of microbes, which are a combination of Gram‐negative and Gram‐positive flora. These bacteria range from anaerobic to facultative aerobic to aerobic organisms. In the procedure described in this unit, the ligation of the cecum produces a source of ischemic tissue as well as polymicrobial infection. This combination of ischemic/necrotic tissue and microbial infection distinguishes this multifactorial model from a number of other bacterial sepsis models, including but not limited to: bacteremia secondary to intravenous or intraperitoneal administration; fecal administration or intraperitoneal administration of fecal or bacterial plugs; colonic stents; and bacterial abscess formation. Curr. Protoc. Immunol. 91:19.13.1‐19.13.11. © 2010 by John Wiley & Sons, Inc.

Keywords: sepsis; cecal ligation and puncture; systemic inflammatory response syndrome; shock; murine model

PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Mice
  • Isoflurane
  • O 2 tank
  • 70% ethanol
  • Buprenorphine in 0.9% saline (0.05 to 0.2 mg/kg per mouse)
  • Inhalant anesthesia system for veterinary surgery (e.g., VetEquip or Webster Veterinary Supply)
  • 1‐liter induction Plexiglas chamber (VetEquip, cat. no. 941443)
  • Electric razor
  • 5‐in. stainless steel straight‐edge or iris scissors
  • 5‐in. stainless steel forceps (non‐crushing)
  • 2‐0 silk suture
  • 22‐ to 27‐G sterile hollow bore needles
  • Needle driver
  • 3‐0 absorbable polyfilament interrupted sutures (e.g., Vicryl)
  • Autoclip wound closing system (BD) and auto‐clips
  • Thermal blanket
NOTE: Isoflurane and buprenorphine are controlled substances and require appropriate storage and documentation.
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Benjamim, C.F., Hogaboam, C.M., Lukacs, N.W., and Kunkel, S.L. 2003. Septic mice are susceptible to pulmonary aspergillosis. Am. J. Pathol. 163:2605‐2617.
   Buras, J.A., Holzmann, B., and Sitkovsky, M. 2005. Animal models of sepsis: Setting the stage. Nat. Rev. Drug Discov. 4:854‐865.
   Delano, M.J., Scumpia, P.O., Weinstein, J.S., Coco, D., Nagaraj, S., Kelly‐Scumpia, K.M., O'Malley, K.A., Wynn, J.L., Antonenko, S., Al‐Quran, S.Z., Swan, R., Chung, C.S., Atkinson, M.A., Ramphal, R., Gabrilovich, D.I., Reeves, W.H., Ayala, A., Phillips, J., Laface, D., Heyworth, P.G., Clare‐Salzler, M., and Moldawer, L.L. 2007. MyD88‐dependent expansion of an immature GR‐1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J. Exp. Med. 204:1463‐1474.
   Efron, P.A. 2004. Increased lymphoid tissue apoptosis in baboons with bacteremic shock. Shock 21:566‐571.
   Enoh, V.T., Lin, S.H., Lin, C.Y., Toliver‐Kinsky, T., Murphey, E.D., Varma, T.K., and Sherwood, E.R. 2007. Mice depleted of alphabeta but not gammadelta T cells are resistant to mortality caused by cecal ligation and puncture. Shock 27:507‐519.
   Ertel, W., Morrison, M.H., Wang, P., Ba, Z.F., Ayala, A., and Chaudry, I.H. 1991. The complex pattern of cytokines in sepsis. Association between prostaglandins, cachectin, and interleukins. Ann. Surg. 214:141‐148.
   Esmon, C.T. 2004. Why do animal models (sometimes) fail to mimic human sepsis? Crit. Care Med. 32:S219‐S222.
   Harada, T., Moore, B.A., Yang, R., Cruz, R.J. Jr., Delude, R.L., and Fink, M.P. 2005. Ethyl pyruvate ameliorates ileus induced by bowel manipulation in mice. Surgery 138:530‐537.
   Hollenberg, S.M. 2005. Mouse models of resuscitated shock. Shock 24:58‐63.
   Hotchkiss, R.S. and Karl, I.E. 2003. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348:138‐150.
   Hotchkiss, R.S., Swanson, P.E., Cobb, J.P., Jacobson, A., Buchman, T.G., and Karl, I.E. 1997. Apoptosis in lymphoid and parenchymal cells during sepsis: Findings in normal and T‐ and B‐cell‐deficient mice. Crit. Care Med. 25:1298‐1307.
   Hubbard, W.J., Choudhry, M., Schwacha, M.G., Kerby, J.D., Rue, L.W. 3rd, Bland, K.I., and Chaudry, I.H. 2005. Cecal ligation and puncture. Shock 24:52‐57.
   Lederer, J.A., Rodrick, M.L., and Mannick, J.A. 1999. The effects of injury on the adaptive immune response. Shock 11:153‐159.
   Mannick, J.A., Rodrick, M.L., and Lederer, J.A. 2001. The immunologic response to injury. J. Am. Coll. Surg. 193:237‐244.
   Martin, G.S., Mannino, D.M., Eaton, S., and Moss, M. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348:1546‐1554.
   Okazaki, Y. and Matsukawa, A. 2009. Pathophysiology of sepsis and recent patents on the diagnosis, treatment and prophylaxis for sepsis. Recent Pat. Inflamm. Allergy Drug Discov. 3:26‐32.
   Poli‐de‐Figueiredo, L.F., Garrido, A.G., Nakagawa, N., and Sannomiya, P. 2008. Experimental models of sepsis and their clinical relevance. Shock 30:53‐59.
   Reijnen, M.M., Bleichrodt, R.P., and van Goor, H. 2003. Pathophysiology of intra‐abdominal adhesion and abscess formation, and the effect of hyaluronan. Br. J. Surg. 90:533‐541.
   Rittirsch, D., Hoesel, L.M., and Ward, P.A. 2007. The disconnect between animal models of sepsis and human sepsis. J. Leukoc. Biol. 81:137‐143.
   Rittirsch, D., Huber‐Lang, M.S., Flierl, M.A., and Ward, P.A. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4:31‐36.
   Scumpia, P.O., McAuliffe, P.F., O'Malley, K.A., Ungaro, R., Uchida, T., Matsumoto, T., Remick, D.G., Clare‐Salzler, M.J., Moldawer, L.L., and Efron, PA. 2005. CD11c+ dendritic cells are required for survival in murine polymicrobial sepsis. J. Immunol. 175:3282‐3286.
   Scumpia, P.O., Delano, M.J., Kelly, K.M., O'Malley, K.A., Efron, P.A., McAuliffe, P.F., Brusko, T., Ungaro, R., Barker, T., Wynn, J.L., Atkinson, M.A., Reeves, W.H., Salzler, M.J., and Moldawer, L.L. 2006. Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis. J. Immunol. 177:7943‐7949.
   Townsend, C.M. Jr., Evers, B.M., and Mattox, K.L. 2007. Sabiston Textbook of Surgery: Expert Consult Premium Edition: Enhanced Online Features and Print (Sabiston Textbook of Surgery: The Biological Basis of Modern Practicsurgical Practice) Saunders, Philadelphia.
   Turnbull, I.R., Wlzorek, J.J., Osborne, D., Hotchkiss, R.S., Coopersmith, C.M., and Buchman, T.G. 2003. Effects of age on mortality and antibiotic efficacy in cecal ligation and puncture. Shock 19:310‐313.
   Watanabe, H., Numata, K., Ito, T., Takagi, K., and Matsukawa, A. 2004. Innate immune response in Th1‐ and Th2‐dominant mouse strains. Shock 22:460‐466.
   Weber, S.U., Schewe, J.C., Lehmann, L.E., Müller, S., Book, M., Klaschik, S., Hoeft, A., and Stüber, F. 2008. Induction of Bim and Bid gene expression during accelerated apoptosis in severe sepsis. Crit. Care 12:R128.
   Witek‐Janusek, L. and Ratmeyer, J.K. 1991. Sepsis in the young rat: Maternal milk protects during cecal ligation and puncture sepsis but not during endotoxemia. Circ. Shock 33200‐33206.
   Zanotti‐Cavazzoni, S.L., Guglielmi, M., Parrillo, J.E., Walker, T., Dellinger, R.P., and Hollenberg, S.M. 2009. Fluid resuscitation influences cardiovascular performance and mortality in a murine model of sepsis. Intensive Care Med. 35:748‐754.
PDF or HTML at Wiley Online Library