Peptide Binding Motifs for MHC Class I and II Molecules

William E. Biddison1, Roland Martin1

1 National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
Publication Name:  Current Protocols in Immunology
Unit Number:  Appendix 1I
DOI:  10.1002/0471142735.ima01is36
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This overview discusses the use of peptide‐bindnig motifs to predict interaction with a specific MHC class I or II allele, and gives examples for the use of MHC binding motifs to predict T‐cell recognition.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Using Peptide‐Binding Motifs to Predict Interaction with a Specific MHC Class I or Class II Allele
  • Examples for the Use of MHC Binding Motifs to Predict T Cell Recognition
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Altuvia, Y., Sette, A., Sidney, J., Southwood, S., and Margalit, H. 1997. A structure‐based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. Hum. Immunol. 58:1‐11.
   Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S., Strominger, J.L., and Wiley, D.C. 1987. Structure of the human class I histocompatibility antigen HLA‐A2. Nature 329:506‐512.
   Brown, J.H., Jardetzky, T.S., Gorga, J.C., Stern, L.J., Urban, R.G., Strominger, J.L., and Wiley, D.C. 1993. Three‐dimensional structure of the human class II histocompatibility antigen HLA‐DR1. Nature 364:33‐39.
   Brusic, V., Honeyman, G., Hammer, J., and Harrison, L. 1998a. Prediction of MHC class II–binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14:121‐130.
   Brusic, V., Rudy, G., and Harrison, L.C. 1998b. MHCPEP, a database of MHC‐binding peptides: Update 1997. Nucl. Acids Res. 26:368‐371.
   Chicz, R.M., Urban, R.G., Lane, W.S., Gorga, J.C., Stern, L.J., Vignali, D.A., and Strominger, J.L. 1992. Predominantly naturally processed peptides bound to HLA‐DR1 are derived from MHC‐related molecules and are heterogeneous in size. Nature 358:764‐768.
   Chicz, R.M., Urban, R.G., Gorga, J.C., Vignali, D.A.A., Lane, W.S., and Strominger, J.L. 1993. Specificity and promiscuity among naturally processed peptides bound to HLA‐DR alleles. J. Exp. Med. 178:27‐47.
   Falcioni, F., Ito, K., Vidovic, D., Belunis, C., Campbell, R., Berthel, S.J., Bolin, D.R., Gillespie, P.B., Huby, N., Olson, G.L., Sarabu, R., Guenot, J., Madison, V., Hammer, J., Sinigaglia, F., Steinmetz, M., and Nagy, Z.A. 1999. Peptidomimetic compounds that inhibit antigen presentation by autoimmune disease‐associated class II major histocompatibility molecules. Nature Biotechnol. 17:562‐567.
   Falk, K., Rötzschke, O., Stevanovic, S., Jung, G., and Rammensee, H.‐G. 1994. Pool sequencing of natural HLA‐DR, ‐DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Immunogenetics 39:230‐242.
   Fleckenstein, B., Kalbacher, H., Müller, C.P., Stoll, D., Halder, T., Jung, G., and Wiesmuller, K.H. 1996. New ligands binding to the human leukocyte antigen class II molecule DRB1*0101 based on the activity pattern of an undecapeptide library. Eur. J. Biochem. 240:71‐77.
   Garboczi, D.N., Ghosh, P., Utz, U., Fan, Q.R., Biddison, W.E., and Wiley, D.C. 1996. Structure of the complex between human T‐cell receptor, viral peptide and HLA‐A2. Nature 384:134‐141.
   Garcia, K.C., Degano, M., Stanfield, R.L., Brunmark, A., Jackson, M.R., Peterson, P.A., Teyton, L., and Wilson, I.A. 1996. An αβ T cell receptor structure at 2.5Å and its orientation in the TCR‐MHC complex. Science 274:209‐219.
   Germain, R.N. 1994. MHC‐dependent antigen processing and peptide presentation: Providing ligands for T lymphocyte activation. Cell 76:287‐299.
   Hammer, J., Takacs, B., and Sinigaglia, F. 1992. Identification of a motif for HLA‐DR1 binding peptides using M13 display libraries. J. Exp. Med. 176:1007‐1013.
   Hammer, J., Valsasnini, P., Tolba, K., Bolin, D., Higelin, J., Takacs, B., and Sinigaglia, F. 1993. Promiscuous and allele‐specific anchors in HLA‐DR‐binding peptides. Cell 74:197‐203.
   Hammer, J., Bono, E., Gallazzi, F., Belunis, C., Nagy, Z., and Sinigaglia, F. 1994. Precise prediction of major histocompatibility complex class II–peptide interaction based on peptide side chain scanning. J. Exp.Med. 180:2353‐2358.
   Hammer, J., Gallazzi, F., Bono, E., Karr, R.W., Guenot, J., Valsasnini, P., Nagy, Z.A., and Sinigaglia, F. 1995. Peptide binding specificity of HLA‐DR4 molecules: Correlation with rheumatoid arthritis association. J. Exp. Med. 181:1847‐1855.
   Hemmer, B., Kondo, T., Gran, B., Pinilla, C., Cortese, I., Pascal, J., Tzou, A., McFarland, H.F., Houghton, R., and Martin, R. 2000. Minimal peptide length requirements for CD4+ T cell clones—implications for molecular mimicry and T cell survival. Int.Immunol. 12:375‐383.
   Honeyman, M.C., Brusic, V., and Harrison, L.C. 1997. Strategies for identifying and predicting islet autoantigen T‐cell epitopes in insulin‐dependent diabetes mellitus. Ann. Med. 29:401‐404.
   Honeyman, M.C., Brusic, V., Stone, N.L., and Harrison, L.C. 1998. Neural network‐based prediction of candidate T‐cell epitopes. Nature Biotechnol. 16:966‐969.
   Hunt, D.F., Henderson, R.A., Shabanowitz, J., Sakaguchi, K., Michel, H., Sevilir, N., Cox, A.L., Appella, E., and Engelhard, V.H. 1992. Characterization of peptides bound to the class I MHC molecule HLA‐A2.1 by mass spectrometry. Science 255:1261‐1263.
   Jardetzky, T.S., Lane, W.S., Robinson, R.A., Madden, D.R., and Wiley, D.C. 1991. Identification of self peptides bound to purified HLA‐B27. Nature 353:326‐329.
   Jardetzky, T.S., Brown, J.H., Gorga, J.C., Stern, L.J., Urban, R.G., Chi, Y.I., Stauffacher, C., Strominger, J.L., and Wiley, D.C. 1994. Three‐dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368:711‐718.
   Jurewicz, A., Biddison, W., and Antel, J. 1998. MHC class I‐restricted lysis of human oligodendrocytes by myelin basic protein‐specific CD8+ T lymphocytes. J. Immunol. 160:3056‐3059.
   Kropshofer, H., Max, H., Müller, C.A., Hesse, F., Stevanovic, S., Jung, G., and Kalbacher, H. 1992. Self‐peptide released from class II HLA‐DR1 exhibits a hydrophobic two‐residue contact motif. J. Exp. Med. 175:1799‐1803.
   Mamitsuka, H. 1998. Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 1:460‐474.
   Margalit, H., Spouge, J.L., Cornette, J.L., Cease, K.B., Delisi, C., and Berzofsky, J.A. 1987. Prediction of immunodominant helper T cell antigenic sites from the primary sequence. J. Immunol. 138:2213‐2229.
   Martin, R., Howell, M.D., Jaraquemada, D., Flerlage, M., Richert, J., Brostoff, S., Long, E.O., McFarlin, D.E., and McFarland, H.F. 1991. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA‐DR types associated with multiple sclerosis. J. Exp. Med. 173:19‐24.
   Martin, R., McFarland, H.F., and McFarlin, D.E. 1992. Immunological aspects of demyelinating diseases. Annu. Rev. Immunol. 10:153‐187.
   Milik, M., Sauer, D., Brunmark, A.P., Yuan, L., Vitiello, A., Jackson, M.R., Peterson, P.A., Skolnick, J., and Glass, C.A. 1998. Application of an artificial neural network to predict specific class I MHC binding peptide sequences. Nature Biotechnol. 16:753‐756.
   Muraro, P.A., Vergelli, M., Kalbus, M., Banks, D.E., Nagle, J.W., Tranquill, L.R., Nepom, G.T., Biddison, W.E., McFarland, H.F., and Martin, R. 1997. Immunodominance of a low‐affinity MHC binding myelin basic protein epitope (residues 111‐129) in HLA‐DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire. J. Clin. Invest. 100:339‐349.
   Nepom, G.G. and Erlich, H. 1991. MHC class‐II molecules and autoimmunity. Annu. Rev. Immunol. 9:493‐526.
   Parker, K.C., Bednarek, M.A., Hull, L.K., Utz, U., Cunningham, B., Zweerink, H.J., Biddison, W.E., and Coligan, J.E. 1992. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA‐A2. J. Immunol. 149:3580‐3587.
   Parker, K.C., Bednarek, M.A., and Coligan, J.E. 1994. A Scheme for ranking potential HLA‐A2 binding peptides based on independent binding of individual peptide side‐chains. J. Immunol. 152:163‐175.
   Parker, K.C., Shields, M., DiBrino, M., Brooks, A., and Coligan, J.E. 1995. Peptide binding to MHC class I molecules: Implications for antigenic peptide prediction. Immunol. Res. 14:34‐57.
   Rammensee, H.‐G., Falk, K., and Rötzschke, O. 1993. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11:213‐244.
   Rammensee, H.‐G., Friede, T., and Stevanovic, S. 1995. MHC ligands and peptide motifs: First listing. Immunogenetics 41:178‐228.
   Reche, P.A., Glutting, J.-P., and Reinherz, E.L. 2002. Prediction of MHC class I binding peptides using profile motifs.. Hum. Immunol. 63:701‐709.
   Reddehase, M.J., Rothbard, J.B., and Koszinowski, U.H. 1989. A pentapeptide as minimal antigenic determinant for MHC class I–restricted T lymphocytes. Nature 337:651‐653.
   Roberts, C.G., Meister, G.E., Jesdale, B.M., Lieberman, J., Berzofsky, J.A., and De Groot, A.S. 1996. Prediction of HIV peptide epitopes by a novel algorithm. AIDS Res. Hum. Retroviruses 1:593‐610.
   Rothbard, J.B. and Gefter, M.L. 1991. Interactions between immunogenetic peptides and MHC proteins. Annu. Rev. Immunol. 9:527‐565.
   Rötzschke, O., Falk, K., Deres, K., Schild, H., Norda, M., Metzger, J., Jung, G., and Rammensee, H.‐G. 1990. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348:252‐254.
   Ruppert, J., Sidney, J., Celis, E., Kubo, R., Grey, H., and Sette, A. 1993. Prominent roles of secondary anchor residues in peptide binding to HLA‐A2.1 molecules. Cell 74:929‐937.
   Sette, A. and Sidney, J. 1998. HLA supertypes and supermotifs: A functional perspective on HLA polymorphism. Curr. Opin. Immunol. 10:478‐482.
   Sette, A., Buus, S., Appella, E., Smith, J.A., Chesnut, R., Miles, C., Colon, S.M., and Grey, H.M. 1989. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc. Natl. Acad. Sci. U.S.A. 86:3296‐3300.
   Smith, K.J., Pyrdol, J., Gauthier, L., Wiley, D.C., and Wucherpfennig, K.W. 1998. Crystal structure of HLA‐DR2 (DRA*0101, DRB*1501) complexed with a peptide from human myelin basic protein. J. Exp. Med. 188:1511‐1520.
   Southwood, S., Sidney, J., Kondo, A., del Guercio, M.F., Appella, E., Hoffman, S., Kubo, R.T., Chesnut, R.W., Grey, H.M., and Sette, A. 1998. Several common HLA‐DR types share largely overlapping peptide binding repertoires. J. Immunol. 160:3363‐3373.
   Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Sinigaglia, F., and Hammer, J. 1999. Generation of tissue‐specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nature Biotechnol. 17:555‐561.
   Tsuchida, T., Parker, K.C., Turner, R.V., McFarland, H.F., Coligan, J.E., and Biddison, W.E. 1994. Autoreactive CD8+ T‐cell responses to human myelin protein‐derived peptides. Proc. Natl. Acad. Sci. U.S.A. 91:10859‐10863.
   Valli, A., Sette, A., Kappos, L., Oseroff, C., Sidney, J., Miescher, G., Hochberger, M., Albert, E.D., and Adorini, L. 1993. Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J. Clin. Invest. 91:616‐628.
   Vergelli, M., Kalbus, M., Rojo, S.C., Hemmer, B., Kalbacher, H., Tranquill, L., Beck, H., McFarland, H.F., De Mars, R., Long, E.O., and Martin, R. 1997. T cell response to myelin basic protein in the context of the multiple sclerosis associated HLA‐DR15 haplotype: Peptide binding, immunodominance and effector functions of T cells. J. Neuroimmunol. 77:195‐203.
   Vogt, A.B., Kropshofer, H., Kalbacher, H., Kalbus, M., Rammensee, H.‐G., Coligan, J.E., and Martin, R. 1994. Ligand motifs of HLA‐DRB5*0101 and DRB1*1501 molecules delineated from self‐peptides. J. Immunol. 153:1665‐1673.
   Wucherpfennig, K.W., Sette, A., Southwood, S., Oseroff, C., Matsui, M., Strominger, J.L., and Hafler, D.A. 1994. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J. Exp. Med. 179:279‐290.
Internet Resources
   http://134.2.96.221/
  Web site for SYFPEITHI. Comprises ∼2000 peptide sequences known to bind class I and class II MHC molecules. Entries are compiled from published reports only. Very convenient to use to find binding motifs.
   http://wehih.wehi.edu.au/mhcpep
  Web site for MHCPEP. Lists >13,000 peptides known to bind to defined MHC molecules (Brusic et al., ).
   http://bimas.dcrt.nih.gov/molbio/hla_bind/
  Web site for Bioinformatics and Molecular Analysis System (BIMAS). Contains HLA peptide binding predictions, function:rank potentials for 8‐mer, 9‐mer, or 10‐mer peptides based on predicted half‐time or dissociation to HLA class I molecules. Analysis is based on coefficient tables deduced from published literature (K. Parker, NIAID, NIH; kparker@atlas.niaid.nih.gov).
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library