Heat‐Shock Proteins

Zihai Li1, Pramod Srivastava1

1 University of Connecticut School of Medicine, Farmington, Connecticut
Publication Name:  Current Protocols in Immunology
Unit Number:  Appendix 1T
DOI:  10.1002/0471142735.ima01ts58
Online Posting Date:  February, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Heat‐shock proteins (HSPs), or stress proteins, are highly conserved and present in all organisms and in all cells of all organisms. Selected HSPs, also known as chaperones, play crucial roles in folding/unfolding of proteins, assembly of multiprotein complexes, transport/sorting of proteins into correct subcellular compartments, cell‐cycle control and signaling, and protection of cells against stress/apoptosis. More recently, HSPs have been implicated in antigen presentation with the role of chaperoning and transferring antigenic peptides to the class I and class II molecules of the major histocompatibility complexes. In addition, extracellular HSPs can stimulate professional antigen‐presenting cells of the immune system, such as macrophages and dendritic cells. HSPs constitute a large family of proteins that are often classified based on their molecular weight: hsp10, hsp40, hsp60, hsp70, hsp90, etc. This unit contains a table that lists common HSPs and summarizes their characteristics including (a) name, (b) subcellular localization, (c) known function, (d) chromosome assignment, (e) brief comments, and (f) references.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Arrigo, A.P. and Landry, J. 1994. Expression and function of the low‐molecular weight heat shock proteins. In The Biology of the Heat Shock Proteins and Molecular chaperones (R.I. Morimoto, A. Tissieres, and C. Georgopoulos, eds.) pp. 335‐373. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
   Basu, S. and Srivastava, P.K. 1999. Calreticulin, a peptide‐binding chaperone of the endoplasmic reticulum, elicits tumor‐ and peptide‐specific immunity. J. Exp. Med. 189:797‐802.
   Basu, S., Binder, R.J., Suto, R., Anderson, K.M., and Srivastava, P.K. 2000. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF‐kappa B pathway. Int. Immunol. 12:1539‐1546.
   Binder, R.J., Han, D.K., and Srivastava, P.K. 2000. CD91: A receptor for heat shock protein gp96. Nat. Immunol. 1:151‐155.
   Bukau, B. and Horwich, A.L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351‐366.
   Dahlseid, J.N., Lill, R., Green, J.M., Xu, X., Qiu, Y., and Pierce, S.K. 1994. PBP74, a new member of the mammalian 70‐kDa heat shock protein family, is a mitochondrial protein. Mol. Biol. Cell. 5:1265‐1275.
   Degen, E. and Williams, D.B. 1991. Participation of a novel 88‐kD protein in the biogenesis of murine class I histocompatibility molecules. J. Cell. Biol. 112:1099‐1115.
   Haas, I.G. and Wabl, M. 1983. Immunoglobulin heavy chain binding protein. Nature 306:387‐389.
   Hartman, D.J., Hoogenraad, N.J., Condron, R., and Hoj, P.B. 1992. Identification of a mammalian 10‐kDa heat shock protein, a mitochondrial chaperonin 10 homologue essential for assisted folding of trimeric ornithine transcarbamoylase in vitro. Proc. Natl. Acad. Sci. U.S.A. 89:3394‐3398.
   Hochstenbach, F., David, V., Watkins, S., and Brenner, M.B. 1992. Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T‐ and B‐cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc. Natl. Acad. Sci. U.S.A. 89:4734‐4738.
   Kaloff, C.R. and Haas, I.G. 1995. Coordination of immunoglobulin chain folding and immunoglobulin chain assembly is essential for the formation of functional IgG. Immunity 2:629‐637.
   Li, Z. and Srivastava, P.K. 1993. Tumor rejection antigen gp96/grp94 is an ATPase: Implications for protein folding and antigen presentation. Embo J. 12:3143‐3151.
   Li, Z., Menoret, A., and Srivastava, P. 2002. Roles of heat‐shock proteins in antigen presentation and cross‐presentation. Curr. Opin. Immunol. 14:45‐51.
   Lindquist, S. 1986. The heat‐shock response. Annu. Rev. Biochem. 55:1151‐1191.
   Liu, Q., D'Silva, P., Walter, W., Marszalek, J., and Craig, E.A. 2003. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 300:139‐141.
   Manjili, M.H., Henderson, R., Wang, X.Y., Chen, X., Li, Y., Repasky, E., Kazim, L., and Subjeck, J.R. 2002. Development of a recombinant HSP110‐HER‐2/neu vaccine using the chaperoning properties of HSP110. Cancer Res. 62:1737‐1742.
   Melcher, A., Todryk, S., Hardwick, N., Ford, M., Jacobson, M., and Vile, R.G. 1998. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat. Med. 4:581‐587.
   Ogden, C.A., deCathelineau, A., Hoffmann, P.R., Bratton, D., Ghebrehiwet, B., Fadok, V.A., and Henson, P.M. 2001. C1q and mannose binding lectin engagement of cell surface calreticulin and cd91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194:781‐796.
   Ohashi, K., Burkart, V., Flohe, S., and Kolb, H. 2000. Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll‐like receptor‐4 complex. J. Immunol. 164:558‐561.
   Ohtsuka, K. and Hata, M. 2000. Mammalian HSP40/DNAJ homologs: Cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5:98‐112.
   Quax‐Jeuken, Y., Quax, W., van Rens, G., Khan, P.M., and Bloemendal, H. 1985. Complete structure of the alpha B‐crystallin gene: Conservation of the exon‐intron distribution in the two nonlinked alpha‐crystallin genes. Proc. Natl. Acad. Sci. U.S.A. 82:5819‐5823.
   Rutherford, S.L. and Lindquist, S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396:336‐342.
   Sadasivan, B., Lehner, P.J., Ortmann, B., Spies, T., and Cresswell, P. 1996. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5:103‐114.
   Srivastava, P.K. 2002. Roles of heat‐shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2:185‐194.
   Suto, R. and Srivastava, P.K. 1995. A mechanism for the specific immunogenicity of heat shock protein‐ chaperoned peptides. Science 269:1585‐1588.
   Tasab, M., Batten, M.R., and Bulleid, N.J. 2000. Hsp47: A molecular chaperone that interacts with and stabilizes correctly‐folded procollagen. EMBO J. 19:2204‐2211.
   Udono, H. and Srivastava, P.K. 1993. Heat shock protein 70–associated peptides elicit specific cancer immunity. J. Exp. Med. 178:1391‐1396.
   Udono, H. and Srivastava, P.K. 1994. Comparison of tumor‐specific immunogenicities of stress‐induced proteins gp96, hsp90, and hsp70. J. Immunol. 152:5398‐5403.
   Ullrich, S.J., Robinson, E.A., Law, L.W., Willingham, M., and Appella, E. 1986. A mouse tumor‐specific transplantation antigen is a heat shock–related protein. Proc. Natl. Acad. Sci. U.S.A. 83:3121‐3125.
   Wadhwa, R., Taira, K., and Kaul, S.C. 2002. An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: What, when, and where? Cell Stress Chaperones 7:309‐316.
   Wang, X.Y., Kazim, L., Repasky, E.A., and Subjeck, J.R. 2001. Characterization of heat shock protein 110 and glucose‐regulated protein 170 as cancer vaccines and the effect of fever‐range hyperthermia on vaccine activity. J. Immunol. 166:490‐497.
   Xi, J.H., Bai, F., and Andley, U.P. 2003. Reduced survival of lens epithelial cells in the alphaA‐crystallin‐knockout mouse. J. Cell. Sci. 116:1073‐1085.
   Yamano, T., Murata, S., Shimbara, N., Tanaka, N., Chiba, T., Tanaka, K., Yui, K., and Udono, H. 2002. Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing. J. Exp. Med. 196:185‐196.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library