DNA‐Dependent DNA Polymerases

Rebecca B. Kucera1, Nicole M. Nichols1

1 New England Biolabs, Ipswich, Massachusetts
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 3.5
DOI:  10.1002/0471142727.mb0305s84
Online Posting Date:  October, 2008
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit presents characteristics and reaction conditions of the DNA‐dependent DNA polymerases, including E. coli DNA polymerase I and its Klenow fragment, T4 DNA polymerase, native and modified T7 DNA polymerase, phi29 DNA polymerase, Bst DNA polymerase, and Taq DNA polymerase. The unit also provides overviews of other classes of thermophilic DNA polymerases used in PCR applications (described fully in UNIT 15.1), and the rapidly expanding class of lesion‐bypass DNA polymerases that play a role in DNA damage repair. Curr. Protoc. Mol. Biol. 84:3.5.1‐3.5.19. © 2008 by John Wiley & Sons, Inc.

Keywords: nick translation; 3′‐end labeling; blunting ends; random‐primer synthesis; whole genome amplification; PCR; lesion‐bypass

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • General Notes on Polymerase Protocols
  • Enzyme: Escherichia coli DNA Polymerase I
  • Basic Protocol 1: Uniform Labeling of DNA by Nick Translation
  • Enzyme: Klenow Fragment of Escherichia coli DNA Polymerase I
  • Basic Protocol 2: Labeling of DNA by Random Oligonucleotide‐Primed Synthesis
  • Basic Protocol 3: Labeling the 3′ Ends of DNA
  • Basic Protocol 4: Repairing 3′ or 5′ Overhanging Ends to Generate Blunt Ends
  • Enzyme: T4 DNA Polymerase
  • Basic Protocol 5: Repairing 3′ or 5′ Overhanging Ends to Generate Blunt Ends
  • Enzyme: Native T7 DNA Polymerase
  • Enzyme: Modified T7 DNA Polymerase
  • Enzyme: Phi29 DNA Polymerase
  • Enzyme: Bst DNA Polymerase, Full Length and Large Fragment Forms
  • Enzyme: Taq DNA Polymerase and Its Stoffel Fragment
  • Other Thermophilic DNA Polymerases
  • Enzyme Class: Lesion Bypass DNA Polymerases
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Ander, J.P., Angerer, B., and Loeb, L.A. 2005. Incorporation of reporter‐labeled nucleotides by DNA polymerases. BioTechniques 38:257‐263.
   Bebenek, K. and Kunkel, T.A. 1989. The use of native T7 DNA polymerase for site‐directed mutagenesis. Nucleic Acids Res. 17:5408.
   Bessman, M.J., Lehman, I.R., Simms, E.S., and Kornberg, A. 1958. Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J. Biol. Chem. 233:171‐177.
   Blanco, L., Bernad, A., Lazaro, J.M., Martin, G., Garmendia, C., and Salas, M. 1989. Highly efficient DNA synthesis by the phage phi29 DNA polymerase. J. Biol. Chem. 264:8935‐8940.
   Burgers, P.M., Koonin, E.V., Bruford, E., Blanco, L., Burtis, K.C., Christman, M.F., Copeland, W.C., Friedberg, E.C., Hanaoka, F., Hinkle, D.C., Lawrence, C.W., Nakanishi, M., Ohmori, H., Prakash, L., Prakash, S., Reynaud, C.A., Sugino, A., Todo, T., Wang, Z., Weill, J.C., and Woodgate, R. 2001. Eukaryotic DNA polymerases: Proposal for a revised nomenclature. J. Biol. Chem. 276:43487‐43490.
   Challberg, M.D. and Englund, P.T. 1980. Specific labeling of 3′ termini with T4 DNA polymerase. Methods Enzymol. 65:39‐43.
   Dean, F.B., Hosono, S., Fang, L., Wu, X., Faruqi, A.F., Bray‐Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J., Driscoll, M., Song, W., Kingsmore, S.F., Egholm, M., and Lasken, R.S. 2002. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. U.S.A. 99:5261‐5266.
   Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6‐13.
   Friedberg, E.C., Walker, G.C., Siede, W., Wood, R.D., Schultz, R.A., and Ellenberger, T. 2006. DNA Repair and Mutagenesis, 2nd ed. ASM Press, Washington, D.C.
   Gardner, A.F. and Jack, W.E. 2002. Acyclic and dideoxy terminator preferences denote divergent sugar recognition by archaeon and Taq DNA polymerases. Nucleic Acids Res. 30:605‐613.
   Goulian, M., Lucas, Z.J., and Kornberg, A. 1968. Enzymatic synthesis of deoxyribonucleic acid. XXV. Purification and properties of deoxyribonucleic acid polymerase induced by infection with phage T4. J. Biol. Chem. 243:627‐638.
   Holland, P.M., Abramson, R.D., Watson, R., and Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 88:7276‐7280.
   Innis, M.A., Myambo, K.B., Gelfand, D.H., and Brow, M.D. 1988. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction‐amplified DNA. Proc. Natl. Acad. Sci. U.S.A. 85:9436‐9440.
   Lage, J.M., Leamon, J.H., Pejovic, T., Hamann, S., Lacey, M., Dillon, D., Segraves, R., Vossbrinck, B., Gonzalez, A., Pinkel, D., Albertson, D.G., Costa. J., and Lizardi, P.M. 2003. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array‐CGH. Genome Res. 13:294‐307.
   Lawyer, F.C., Stoffel, S., Saiki, R.K., Chang, S.Y., Landre, P.A., Abramson, R.D., and Gelfand, D.H. 1993. High‐level expression, purification, and enzymatic characterization of full‐length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. 2:275‐287.
   Lehman, I.R., Bessman, M.J., Simms, E.S., and Kornberg, A. 1958. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. Chem. 233:163‐170.
   Longley, M.J., Bennett, S.E., and Mosbaugh, D.W. 1990. Characterization of the 5′ to 3′ exonuclease associated with Thermus aquaticus DNA polymerase. Nucleic Acids Res. 18:7317‐7322.
   Lyamichev, V., Brow, M.A.D., and Dahlberg, J.E. 1993. Structure‐specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260:778‐783.
   Motre, A., Li, Y., and Kong, H. 2008. Enhancing helicase‐dependent amplification by fusing the helicase with the DNA polymerase. Gene 420:17‐22.
   Nelson, J.R., Lawrence, C.W., and Hinkle, D.C. 1996. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382:729‐731.
   Nossal, N.G. 1984. Prokaryotic DNA replication systems. Annu. Rev. Biochem. 53:581‐615.
   Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., and Hase, T. 2000. Loop‐mediated isothermal amplification of DNA. Nucleic Acids Res. 28:e63.
   Tabor, S. and Richardson, C.C. 1989. Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J. Biol. Chem. 264:6447‐6458.
   Tabor, S. and Richardson, C.C. 1995. A single residue in polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy‐ and dideoxyribonucleotides. Proc. Natl. Acad. Sci. U.S.A. 92:6339‐6343.
   Tang, M., Shen, X., Frang, E.G., O'Donnell, M., Woodgate, R., and Goodman, M.F. 1999. UmuD' (2)C is an error‐prone DNA polymerase, Escherichia coli pol V. Proc. Natl. Acad. Sci. U.S.A. 96:8919‐8924.
   Tindall, K.R. and Kunkel, T.A. 1988. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27:6008‐6013.
   Vincent, M., Xu, Y., and Kong, H. 2004. Helicase‐dependent isothermal DNA amplification. EMBO Rep. 5:795‐800.
   Wang, Y., Prosen, D.E., Mei, L., Sullivan, J.C., Finney, M., and Vander Horn, P.B. 2004. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res. 32:1197‐1207.
Key Reference
   Abelson, J.N., Simon, M.I., and Campbell, J.L. (eds.) 1995. Methods in Enzymology, Vol. 262, DNA Replication, Academic Press, San Diego.
  Provides historical and practical information on various topics related to DNA polymerases.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library