Overview of Genetic Reporter Systems

Steven R. Kain1, Subinay Ganguly2

1 Clontech Laboratories, Inc., Palo Alto, California, 2 SmithKline Beecham, King of Prussia, Pennsylvania
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 9.6
DOI:  10.1002/0471142727.mb0906s36
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

One method to gauge changes in transcription is to link a presumed cis‐acting sequence(s) from a gene of interest to the coding sequence for an unrelated reporter gene. Following introduction of the chimeric reporter construct into an appropriate cell type or animal, measurement of reporter‐gene product provides an indirect estimate of the induction in gene expression directed by the regulatory sequences. Numerous in vitro and in vivo reporters genes are discussed in this overview with regard to important issues regarding the selection of a transcription reporter gene, and their applications and limitations.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • SECTION II: Uses of Fusion Genes in Mammalian Transfection
  • Overview of Genetic Reporter Systems
  • Design of Reporter Vectors
  • In Vitro Reporter Assays
  • In Vivo Reporter Assays
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Alam, J. and Cook, J.L. 1990. Reporter genes: Application to the study of mammalian gene transcription. Anal. Biochem. 188:245‐254.
   Araki, E., Shimada, F., Shichiri, M., Mori, M., and Ebina, Y. 1988. pSV00CAT: Low background CAT plasmid. Nucl. Acids Res. 16:1627‐1630.
   Berger, J., Hauber, J., Hauber, R., Geiger, R., and Cullen, B.R. 1988. Secreted placental alkaline phosphatase: A powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66:1‐10.
   Bronstein, I., Fortin, J., Stanley, P.E., Stewart, G.S., and Kricka, L.J. 1994. Chemiluminescent and bioluminescent reporter gene assays. Anal. Biochem. 219:169‐181.
   Cassinotti, P. and Weitz, M. 1994. Increasing the sensitivity of a common CAT assay. BioTechniques 17:36‐38.
   Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802‐805.
   Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G., and Ward, W.W. 1993. Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32:1212‐1218.
   Cullen, B.R. and Malim, M.H. 1992. Secreted placental alkaline phosphatase as a eukaryotic reporter gene. Methods Enzymol. 216:362‐368.
   De Wet, J.R., Wood, K.V., DeLuca, M., Helinski, D.R., and Subramani, S. 1987. Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 7:725‐737.
   Gallagher, S.R. 1992. GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, San Diego, Calif.
   Gorman, C.M., Moffat, L.F., and Howard. B.H. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044‐1051.
   Inouye, S. and Tsuji, F.I. 1994. Aequorea green fluorescent protein: Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 341:277‐280.
   Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. 1987. GUS fusions: β‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901‐3907.
   Laiminis, L.A., Gruss, P., Pozzatti, R., and Khoury, G. 1984. Characterization of enhancer elements in the long terminal repeat of Moloney murine sarcoma virus. J. Virol. 49:183‐189.
   Nguyen, V.T., Morange, M., and Bensaude, O. 1988. Firefly luciferase luminescence assays using scintillation counters for quantitation in transfected mammalian cells. Anal. Biochem. 171:404‐408.
   Nordeen, S.K. 1988. Luciferase reporter gene vectors for analysis of promoters and enhancers. BioTechniques 6:454‐457.
   Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J. 1992. Primary structure of the Aequora victoria green fluorescent protein. Gene 111:229‐233.
   Selden, R.F., Howie, K.B., Rowe, M.E., Goodman, H.M., and Moore, D.D. 1986. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6:3173‐3179.
   Thompson, J.F., Hayes, L.S., and Lloyd, D.B. 1993. Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103:171‐177.
   Wang, S. and Hazelrigg, T. 1994. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369:400‐403.
   Wenger, R.H., Moreau, H., and Nielson, P.J. 1994. A comparison of different promoter, enhancer, and cell type combinations in transient transfections. Anal. Biochem. 221:416‐418.
   Yang, J. and Thomason, D.B. 1993. An easily synthesized, photolyzable luciferase substrate for in vivo luciferase activity measurement. BioTechniques 15:848‐850.
   Young, D.C., Kingsley, S.D., Ryan, K.A., and Dutko, F.J. 1993. Selective inactivation of eukaryotic β‐galactosidase in assays for inhibitors of HIV‐1 TAT using bacterial β‐galactosidase as a reporter enzyme. Anal. Biochem. 215:24‐30.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library