Retrovirus Infection of Cells In Vitro and In Vivo

Constance Cepko1, Warren Pear2

1 Harvard Medical School, Boston, Massachusetts, 2 University of Pennsylvania, Philadelphia, Pennsylvania
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 9.14
DOI:  10.1002/0471142727.mb0914s36
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

There are many applications in which retrovirus vectors are used as transduction agents. In some cases, the vector carries a gene that one wishes to express in a target cell in order to study the function of that gene. In other cases, the virus is used to introduce a histochemical marker gene into cells in order to follow their fate. Retrovirus vectors can also be used in a variety of cells type to investigate regulatory sequences in which a reporter gene and regulatory sequences are carried by the vector and to immortalize or transform primary cells by transduction of oncogenes. For each application, the infection protocol may vary and must often be optimized. Guidelines for infection of cells in some typical in vivo and in vitro experiments are presented in this overview.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Infection of Cells in Vitro
  • Infection of Rodents and Chicks in Vivo
  • Literature Cited
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Austin, C.P. and Cepko, C.L. 1990. Cellular migration patterns in the developing mouse cerebral cortex. Development 110:713‐732.
   Bender, M.A., Palmer, T.D., Gelinas, R.E., and Miller, A.D. 1987. Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J. Virol. 61:1639‐1646.
   Bodine, D.M., Karlsson, S., and Nienhuis, A.W. 1989. Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus‐mediated gene transfer into hematopoietic stem cells. Proc. Natl. Acad. Sci. U.S.A. 86:8897‐8901.
   Bodine, D.M., McDonagh, K.T., Seidel, N.E., and Nienhuis, A.W. 1991. Survival and retrovirus infection of murine hematopoietic stem cells in vitro: effects of 5‐FU and method of infection. Exp. Hematol. 19:206‐212.
   Bodine, D.M., Seidel, N.E., Gale, M.S., Nienhuis, A.W., and Orlic, D. 1994. Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cells mobilized into the peripheral blood by treatment with granulocyte colony‐stimulating factor and stem cell factor. Blood 84:1482‐1491.
   Bronner‐Fraser, M. 1985. Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J. Cell Biol. 101:610‐617.
   Cepko, C.L. 1989. Lineage analysis and immortalization of neural cells via retrovirus vectors. In Neuromethods, Vol. 16: Molecular Neurobiological Techniques (A.A. Boulton G.B. Baker, and A.T. Campagnoni, eds.) pp. 367‐392. Humana Press, Clifton, N.J.
   Cepko, C.L., Ryder, E., Fekete, D.M., and Bruhn, S. In press. Detection of β‐galactosidase and alkaline phosphatase activities in tissue. In Methods in Cell Biology (D. Spector, L. Leinwand, and R. Goldman, eds.). Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y.
   Daley, G.Q., Van Etten, R.A., and Baltimore, D. 1990. Induction of chronic myelogenous leukemia in mice by the P210 bcr/abl gene of the Philadelphia chromosome. Science 247:824‐830.
   Donovan, J. and Brown, P. 1995. Care and handling of laboratory animals. In Current Protocols in Immunology (J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, and W. Strober, eds.) pp. 1.0.1‐ 1.8.4. John Wiley & Sons, New York.
   Fekete, D.M. and Cepko, C.L. 1993a. Retroviral infection coupled with tissue transplantation limits gene transfer in the chick embryo. Proc. Natl. Acad. Sci. U.S.A. 90:2350‐2354.
   Fekete, D.M. and Cepko, C.L. 1993b. Replication competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. Mol. Cell. Biol. 13:2604‐2613.
   Fields‐Berry, S.C., Halliday, A.L., and Cepko, C.L. 1992. Novel recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina. Proc. Natl. Acad. Sci. U.S.A. 89:693‐697.
   Fraser, C.C., Szilvassy, S.J., Eaves, C.J., and Humphries, R.K. 1992. Proliferation of totipotent hematopoietic stem cells in vitro with retention of long‐term competitive in vivo reconstituting ability. Proc. Natl. Acad. Sci. U.S.A. 89:1968‐1972.
   Gudkov, A.V., Zelnick, C.R., Kazarov, A.R., Thimmapaya, R., Suttle, D.P., Beck, W.T., and Roninson, I.B. 1993. Isolation of genetic suppressor elements, inducing resistance to topoisomerase II‐interactive cytotoxic drugs, from human topoisomerase II cDNA. Proc. Natl. Acad. Sci. U.S.A. 90:3231‐3235.
   Gudkov, A.V., Kazarov, A.R., Thimmapaya, R., Axenovich, S.A., Mazo, I.A., and Roninson, I.B. 1994. Cloning mammalian genes by expression selection of genetic suppressor elements: association of kinesin with drug resistance and cell immortalization. Proc. Natl. Acad. Sci. U.S.A. 91:3744‐3748.
   Homburger, S.A. and Fekete, D.M. 1996. High efficiency gene transfer into the embryonic chick CNS using B‐subgroup retroviruses. Dev. Dyn. 206:112‐120.
   Kitamura, T., Onishi, M., Kinoshita, S., Shibuya, A., Miyajima, A., and Nolan, G.P. 1995. Efficient screening of retroviral cDNA expression libraries. Proc. Natl. Acad. Sci. U.S.A . 92:9146‐9150.
   Kotani, H., Newton, P.B.R., Zhang, S., Chiang, Y.L., Otto, E., Weaver, L., Blaese, R.M., Anderson, W.F., and McGarrity, G.J. 1994. Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 5:19‐28.
   Lemischka, I.R., Raulet, D.H., and Mulligan, R.C. 1986. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:917‐927.
   Morgan, B.A., Fekete, D.M. 1996. Manipulating gene expression with replication competent retroviruses. Methods Cell Biol. 51:185‐218.
   Muneoka, K., Wanek, N., and Bryant, S.V. 1986. Mouse embryos develop normally exo utero. J. Exp. Zool. 239:289‐293.
   Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., and Trono, D. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263‐267.
   Onishi, M., Kinoshita, S., Morikawa, Y., Shibuya, A., Phillips, J., Lanier, L.L., Gorman, D.M., Nolan, G.P., Miyajima, A., and Kitamura, T. 1996. Applications of retrovirus‐mediated expression cloning. Exp. Hematol. 24:324‐329.
   Pear, W.S., Aster, J.C., Scott, M.L., Hasserjian, R.P., Soffer, B., Sklar, J., and Baltimore, D. 1996. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183:2283‐2291.
   Rayner, J.R. and Gonda, T.J. 1994. A simple and efficient procedure for generating stable expression libraries by cDNA cloning in a retroviral vector. Mol. Cell Biol. 14:880‐887.
   Turner, D.L., Snyder, E.Y., and Cepko, C.L. 1990. Lineage‐independent determination of cell type in the embryonic mouse retina. Neuron 4:833‐845.
   van Zandt, G. 1984. Studies of hematopoietic stem cells spared by 5‐fluorouracil. J. Exp. Med. 159:679‐690.
   Whitehead, I., Kirk, H., and Kay, R. 1995. Expression cloning of oncogenes by retroviral transfer of cDNA libraries. Mol. Cell Biol. 15:704‐710.
   Williams, D.A., Lemischka, I.R., Nathan, D.G., and Mulligan, R.C. 1984. Introduction of a new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310:476‐480.
   Wong, B.Y., Chen, H., Chung, S.W., and Wong, P.M. 1994. High‐efficiency identification of genes by functional analysis from a retroviral cDNA expression library. J. Virol. 68:5523‐5531.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library