Introduction to Peptide Synthesis

Gregg B. Fields1

1 Florida Atlantic University, Boca Raton, Florida
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 11.15
DOI:  10.1002/0471142727.mb1115s59
Online Posting Date:  August, 2002
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This overview presents a review of classical and current solid‐phase peptide synthesis techniques. Peptide synthesis has become a more practical part of present‐day scientific research following the advent of solid‐phase techniques, and has practical commercial and scientific implications. This unit provides information on solid‐phase peptide‐synthesis methodology, offering descriptions of different supports, coupling reagents, and practical approaches to the synthesis of modified residues and structures. It also presents information concerning protein synthesis and the purification and analysis of synthetic peptides. This methodology has great implications for the design of synthetic peptides to serve in antibody production.

PDF or HTML at Wiley Online Library

Table of Contents

  • SECTION IV: Preparation of Antipeptide Antibodies
  • Development of Solid‐Phase Peptide‐Synthesis Methodology
  • The Solid Support
  • Coupling Reagents
  • Synthesis of Modified Residues and Structures
  • Protein Synthesis
  • Side‐Reactions
  • Purification and Analysis of Synthetic Peptides
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Albericio, F., Kneib‐Cordonier, N., Biancalana, S., Gera, L., Masada, R.I., Hudson, D., and Barany, G. 1990. Preparation and application of the 5‐(4‐(9‐fluorenylmethyloxycarbonyl)aminomethyl‐3,5‐dimethoxyphenoxy)valeric acid (PAL) handle for the solid‐phase synthesis of C‐terminal peptide amides under mild conditions. J. Org. Chem. 55:3730‐3743.
   Albericio, F., Lloyd‐Williams, P., and Giralt, E. 1997. Convergent solid‐phase peptide synthesis. Methods Enzymol. 289:313‐336.
   Angeletti, R.H., Bonewald, L.F., and Fields, G.B. 1997. Six year study of peptide synthesis. Methods Enzymol. 289:697‐717.
   Atherton, E. and Sheppard, R.C. 1987. The fluorenylmethoxycarbonyl amino protecting group. In The Peptides, Vol. 9 (S. Udenfriend and J. Meienhofer, eds.) pp. 1‐38. Academic Press, New York.
   Ayers, B., Blaschke, U.K., Camarero, J.A., Cotton, G.J., Holford, M., and Muir, T.W. 1999. Introduction of unnatural amino acids into proteins using expressed protein ligation. Biopolymers (Peptide Sci.). 51:343‐354.
   Barany, G. and Merrifield, R.B. 1979. Solid‐phase peptide synthesis. In The Peptides, Vol. 2 (E. Gross and J. Meienhofer, eds.) pp. 1‐284. Academic Press, New York.
   Bergmann, M. and Zervas, L. 1932. Über ein allgemeines Verfahren der Peptidsynthese. Ber. Dtsch. Chem. Ges. 65:1192‐1201.
   Carpino, L.A. and Han, G.Y. 1972. The 9‐fluorenylmethoxycarbonyl amino‐protecting group. J. Org. Chem. 37:3404‐3409.
   Dawson, P.E., Muir, T.W., Clark‐Lewis, I., and Kent, S.B.H. 1994. Synthesis of proteins by native chemical ligation. Science. 266:776‐779.
   Dawson, P.E., Churchill, M.J., Ghadiri, M.R., and Kent, S.B.H. 1997. Modulation of reactivity in native chemical ligation through the use of thiol additives. J. Am. Chem. Soc. 119:4325‐4329.
   duVigneaud, V., Ressler, C., Swan, J.M., Roberts, C.W., Katsoyannis, P.G., and Gordon, S. 1953. The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Am. Chem. Soc. 75:4879‐4880.
   Fields, C.G. and Fields, G.B. 1994. Solvents for solid‐phase peptide synthesis. In Methods in Molecular Biology, Vol. 35: Peptide Synthesis Protocols (M.W. Pennington and B.M. Dunn, eds.) pp. 29‐40. Humana Press, Totowa, N.J.
   Fields, G.B. and Noble, R.L. 1990. Solid phase peptide synthesis utilizing 9‐fluorenylmethoxy‐carbonyl amino acids. Int. J. Peptide Protein Res. 35:161‐214.
   Fields, C.G., Fields, G.B., Noble, R.L., and Cross, T.A. 1989. Solid phase peptide synthesis of 15N‐gramicidins A, B, and C and high performance liquid chromatographic purification. Int. J. Peptide Protein Res. 33:298‐303.
  Fields, G.B., Otteson, K.M., Fields, C.G., and Noble, R.L. 1990. The versatility of solid phase peptide synthesis. In Innovation and Perspectives in Solid Phase Synthesis: Peptides, Polypeptides and Oligonucleotides, Macro‐organic Reagents and Catalysts (R. Epton, ed.) pp. 241‐260. Solid Phase Conference Coordination, Ltd., Birmingham, U.K.
   Fields, G.B., Lauer‐Fields, J.L., Liu, R.‐q., and Barany, G., 2001. Principles and practice of solid‐phase peptide synthesis. In Synthetic Peptides: A User's Guide, 2nd ed. (G.A. Grant, ed.) in press. W.H. Freeman, New York.
   Fischer, E. and Fourneau, E. 1901. Über einige Derivate des Glykocoils. Ber. Dtsch. Chem. Ges. 34:2868‐2877.
   Kates, S.A., Solé, N.A., Albericio, F., and Barany, G. 1994. Solid‐phase synthesis of cyclic peptides. In Peptides: Design, Synthesis and Biological Activity (C. Basava and G.M. Anantharamaiah, eds.) pp. 39‐57. Birkhaeuser, Boston.
   King, D.S., Fields, C.G., and Fields, G.B. 1990. A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int. J. Peptide Protein Res. 36:255‐266.
   Lauer, J.L., Fields, C.G., and Fields, G.B. 1995. Sequence dependence of aspartimide formation during 9‐fluorenylmethoxycarbonyl solid‐phase peptide synthesis. Lett. Peptide Sci. 1:197‐205.
   Merrifield, R.B. 1963. Solid phase peptide synthesis I: The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85:2149‐2154.
   Merrifield, R.B. 1967. New approaches to the chemical synthesis of peptides. Recent Prog. Hormone Res. 23:451‐482.
   Merrifield, R.B. 1986. Solid phase synthesis. Science. 232:341‐347.
   Merrifield, R.B., Stewart, J.M., and Jernberg, N. 1966. Instrument for automated synthesis of peptides. Anal. Chem. 38:1905‐1914.
   Muir, T.W., Dawson, P.E., and Kent, S.B.H. 1997. Protein synthesis by chemical ligation of unprotected peptides in aqueous solution. Methods Enzymol. 289:266‐298.
   Quibell, M., Owen, D., Packman, L.C., and Johnson, T. 1994. Suppression of piperidine‐mediated side product formation for Asp(OBut)‐containing peptides by the use of N‐(2‐hydroxy‐4‐methoxybenzyl) (Hmb) backbone amide protection. J. Chem. Soc. Chem. Commun. 2343‐2344.
   Rich, D.H. and Singh, J. 1979. The carbodiimide method. In The Peptides, Vol. 1 (E. Gross and J. Meienhofer, eds.) pp.241‐314. Academic Press, New York.
   Sakakibara, S., Shimonishi, Y., Kishida, Y., Okada, M., and Sugihara, H. 1967. Use of anhydrous HF in peptide synthesis I: Behavior of various protective groups in anhydrous HF. Bull. Chem. Soc. Jpn. 40:2164‐2167.
   Sarin, V.K., Kent, S.B.H., and Merrifield, R.B. 1980. Properties of swollen polymer networks: Solvation and swelling of peptide‐containing resins in solid‐phase peptide synthesis. J. Am. Chem. Soc. 102:5463‐5470.
   Shin, Y., Winans, K.A., Backes, B.J., Kent, S.B.H., Ellman, J.A., and Bertozzi, C.R. 1999. FM‐based synthesis of peptide‐αthioesters: Application to the total chemical synthesis of a glycoprotein by native chemical ligation. J. Am. Chem. Soc. 121:11684‐11689.
   Solé, N.A. and Barany, G. 1992. Optimization of solid‐phase synthesis of [Ala8]‐dynorphin A. J. Org. Chem. 57:5399‐5403.
   Tam, J.P. and Lu, Y.‐A. 1995. Coupling difficulty associated with interchain clustering and phase transition in solid phase peptide synthesis. J. Am. Chem. Soc. 117:12058‐12063.
Key References
   Atherton, E. and Sheppard, R.C. 1989. Solid Phase Peptide Synthesis: A Practical Approach. IRL Press, Oxford.
  An extensive collection of Fmoc‐based synthetic methods and techniques.
   Barany and Merrifield 1979. See above.
  The definitive, comprehensive overview of the solid‐phase method.
   Fields, G.B. 1997. Solid‐phase peptide synthesis. Methods Enzymol. Vol. 289.
  A contemporary collection of SPPS techniques and applications.
PDF or HTML at Wiley Online Library