Overview of the HIV‐1 Lentiviral Vector System

Ali Ramezani1, Robert G. Hawley2

1 American Red Cross, Rockville, Maryland, 2 The George Washington University, Washington, D.C.
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 16.21
DOI:  10.1002/0471142727.mb1621s60
Online Posting Date:  November, 2002
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Replication‐defective oncoretroviral vectors have been the most widely used vehicles for gene‐transfer studies because of their capacity to efficiently introduce and stably express transgenes in mammalian cells. A limitation of oncoretroviral vectors is that cell division is required for proviral integration into the host genome. By comparison, lentiviruses such as human immunodeficiency virus type 1 (HIV‐1) have evolved a nuclear‐import machinery that allows them to infect nondividing as well as dividing cells. This unique property has led to the development of lentiviral vectors for gene delivery to a variety of nondividing or slowly dividing cells including neurons and glial cells of the central nervous system and others. This unit is intended to provide an overview of HIV‐1 molecular biology and an introduction to successive generations of HIV‐1‐based lentiviral vectors.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Molecular Biology of HIV‐1
  • Replication‐Defective HIV‐1‐Based Vectors
  • Target Cells of HIV‐1 Vectors
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Aiken, C. and Trono, D. 1995. Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J. Virol. 69:5048‐5056.
   Aiken, C., Konner, J., Landau, N.R., Lenburg, M.E., and Trono, D. 1994. Nef induces CD4 endocytosis: Requirement for a critical dileucine motif in the membrane‐proximal CD4 cytoplasmic domain. Cell 76:853‐864.
   Alkhatib, G., Combadiere, C., Broder, C.C., Feng, Y., Kennedy, P.E., Murphy, P.M., and Berger, E.A. 1996. CC CKR5: A RANTES, MIP‐1α, MIP‐1β receptor as a fusion cofactor for macrophage‐tropic HIV‐1. Science 272:1955‐1958.
   Aloia, R.C., Jensen, F.C., Curtain, C.C., Mobley, P.W., and Gordon, L.M. 1988. Lipid composition and fluidity of the human immunodeficiency virus. Proc. Natl. Acad. Sci. U.S.A. 85:900‐904.
   Berkowitz, R.D., Ilves, H., Plavec, I., and Veres, G. 2001. Gene transfer systems derived from Visna virus: Analysis of virus production and infectivity. Virology 279:116‐129.
   Bray, M., Prasad, S., Dubay, J.W., Hunter, E., Jeang, K.T., Rekosh, D., and Hammarskjold, M.L. 1994. A small element from the Mason‐Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev‐independent. Proc. Natl. Acad. Sci. U.S.A. 91:1256‐1260.
   Bryant, M. and Ratner, L. 1990. Myristoylation‐dependent replication and assembly of human immunodeficiency virus 1. Proc. Natl. Acad. Sci. U.S.A. 87:523‐527.
   Bukrinsky, M.I., Sharova, N., McDonald, T.L., Pushkarskaya, T., Tarpley, W.G., and Stevenson, M. 1993. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc. Natl. Acad. Sci. U.S.A. 90:6125‐6129.
   Bushman, F.D. and Craigie, R. 1991. Activities of human immunodeficiency virus (HIV‐1) integration protein in vitro: Specific cleavage and integration of HIV‐1 DNA. Proc. Natl. Acad. Sci. U.S.A. 88:1339‐1343.
   Charneau, P., Alizon, M., and Clavel, F. 1992. A second origin of DNA plus‐strand synthesis is required for optimal human immunodeficiency virus replication. J. Virol. 66:2814‐2820.
   Chen, B.K., Gandhi, R.T., and Baltimore, D. 1996. CD4 down‐modulation during infection of human T cells with human immunodeficiency virus type 1 involves independent activities of vpu, env, and nef. J. Virol. 70:6044‐6053.
   Chinnasamy, D., Chinnasamy, N., Enriquez, M.J., Otsu, M., Morgan, R.A., and Candotti, F. 2000. Lentiviral‐ mediated gene transfer into human lymphocytes: Role of HIV‐1 accessory proteins. Blood 96:1309‐1316.
   Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P.D., Wu, L., Mackay, C.R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., and Sodroski, J. 1996. The β‐chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV‐1 isolates. Cell 85:1135‐1148.
   Clever, J., Sassetti, C., and Parslow, T.G. 1995. RNA secondary structure and binding sites for gag gene products in the 5′ packaging signal of human immunodeficiency virus type 1. J. Virol. 69:2101‐2109.
   Cohen, E.A., Dehni, G., Sodroski, J.G., and Haseltine, W.A. 1990. Human immunodeficiency virus vpr product is a virion‐associated regulatory protein. J. Virol. 64:3097‐3099.
   Corbeau, P., Kraus, G., and Wong‐Staal, F. 1996. Efficient gene transfer by a human immunodeficiency virus type 1 (HIV‐1)‐derived vector utilizing a stable HIV‐1 packaging cell line. Proc. Natl. Acad. Sci. U.S.A. 93:14070‐14075.
   Cullen, B.R. 1991. Regulation of HIV‐1 gene expression. FASEB J. 5:2361‐2368.
   Curran, M.A., Kaiser, S.M., Achacoso, P.L., and Nolan, G.P. 2000. Efficientcient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol. Ther. 1:31‐38.
   Dalgleish, A.G., Beverley, P.C., Clapham, P.R., Crawford, D.H., Greaves, M.F., and Weiss, R.A. 1984. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763‐767.
   Daly, T.J., Cook, K.S., Gray, G.S., Maione, T.E., and Rusche, J.R. 1989. Specific binding of HIV‐1 recombinant Rev protein to the Rev‐responsive element in vitro. Nature. 342:816‐819.
   Das, A.T., Koken, S.E., Essink, B.B., van Wamel, J.L., and Berkhout, B. 1994. Human immunodeficiency virus uses tRNA(Lys,3) as primer for reverse transcription in HeLa‐CD4+ cells. FEBS Lett. 341:49‐53.
   Debouck, C. 1991. Substrate specificity of the human (type 1) and simian immunodeficiency virus proteases. Adv. Exp. Med. Biol. 306:407‐415.
   Deglon, N., Tseng, J.L., Bensadoun, J.C., Zurn, A.D., Arsenijevic, Y., Pereira, D.A., Zufferey, R., Trono, D., and Aebischer, P. 2000. Self‐inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson's disease. Hum.Gene Ther. 11:179‐190.
   DuBridge, R.B., Tang, P., Hsia, H.C., Leong, P.M., Miller, J.H., and Calos, M.P. 1987. Analysis of mutation in human cells by using an Epstein‐Barr virus shuttle system. Mol. Cell Biol. 7:379‐387.
   Dull, T., Zufferey, R., Kelly, M., Mandel, R.J., Nguyen, M., Trono, D., and Naldini, L. 1998. A third‐generation lentivirus vector with a conditional packaging system. J. Virol. 72:8463‐8471.
   Ernst, R.K., Bray, M., Rekosh, D., and Hammarskjold, M.‐L. 1997. A structured retroviral RNA element that mediates nucleocytoplasmic export of intron‐containing RNA. Mol. Cell Biol. 17:135‐144.
   Farnet, C.M. and Haseltine, W.A. 1991. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J. Virol. 65:1910‐1915.
   Feng, S. and Holland, E.C. 1988. HIV‐1 tat trans‐activation requires the loop sequence within tar. Nature 334:165‐167.
   Feng, Y., Broder, C.C., Kennedy, P.E., and Berger, E.A. 1996. HIV‐1 entry cofactor: Functional cDNA cloning of a seven‐transmembrane, G protein‐coupled receptor. Science 272:872‐877.
   Fischer, U., Huber, J., Boelens, W.C., Mattaj, I.W., and Luhrmann, R. 1995. The HIV‐1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell. 82:475‐483.
   Follenzi, A., Ailles, L.E., Bakovic, S., Geuna, M., and Naldini, L. 2000. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV‐1 pol sequences. Nat. Genet. 25:217‐222.
   Frankel, A.D. and Young, J.A. 1998. HIV‐1: Fifteen proteins and an RNA. Annu. Rev. Biochem. 67:1‐25.
   Freed, E.O., Myers, D.J., and Risser, R. 1989. Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160. J. Virol. 63:4670‐4675.
   Gabuzda, D.H., Lawrence, K., Langhoff, E., Terwilliger, E., Dorfman, T., Haseltine, W.A., and Sodroski, J. 1992. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol. 66:6489‐6495.
   Gallay, P., Hope, T., Chin, D., and Trono, D. 1997. HIV‐1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl. Acad. Sci. U.S.A. 94:9825‐9830.
   Gasmi, M., Glynn, J., Jin, M.‐J., Jolly, D.J., Yee, J.‐K., and Chen, S.‐T. 1999. Requirements for efficient production and transduction of human immunodeficiency virus type 1‐based vectors. J. Virol. 73:1828‐1834.
   Goff, S.P. 1990. Reteroviral reverse transcriptase: Synthesis, structure, and function. J. Acquir. Immune Defic. Syndr. 3:817‐831.
   Goncalves, J., Jallepalli, P., and Gabuzda, D.H. 1994. Subcellular localization of the Vif protein of human immunodeficiency virus type 1. J. Virol. 68:704‐712.
   Gossen, M. and Bujard, H. 1992. Tight control of gene expression in mammalian cells by tetracycline‐responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89:5547‐5551.
   Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766‐1769.
   Hamaguchi, I., Woods, N.B., Panagopoulos, I., Andersson, E., Mikkola, H., Fahlman, C., Zufferey, R., Carlsson, L., Trono, D., and Karlsson, S. 2000. Lentivirus vector gene expression during ES cell‐derived hematopoietic development in vitro. J. Virol. 74:10778‐10784.
   Hawley, R.G. 1996. Therapeutic potential of retroviral vectors. Transfus. Sci. 17:7‐14.
   Hawley, R.G. 2001. Progress toward vector design for hematopoietic stem cell gene therapy. Curr. Gene Ther. 1:1‐17.
   Hawley, R.G., Lieu, F.H.L., Fong, A.Z.C., and Hawley, T.S. 1994. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1:136‐138.
   Heinzinger, N.K., Bukinsky, M.I., Haggerty, S.A., Ragland, A.M., Kewalramani, V., Lee, M.A., Gendelman, H.E., Ratner, L., Stevenson, M., and Emerman, M. 1994. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl. Acad. Sci. U.S.A. 91:7311‐7315.
   Jacks, T., Power, M.D., Masiarz, F.R., Luciw, P.A., Barr, P.J., and Varmus, H.E. 1988. Characterization of ribosomal frameshifting in HIV‐1 gag‐pol expression. Nature. 331:280‐283.
   Kafri, T., Blomer, U., Peterson, D.A., Gage, F.H., and Verma, I.M. 1997. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 17:314‐317.
   Kafri, T., van Praag, H., Ouyang, L., Gage, F.H., and Verma, I.M. 1999. A packaging cell line for lentivirus vectors. J. Virol. 73:576‐584.
   Kanazawa, S., Okamoto, T., and Peterlin, B.M. 2000. Tat competes with CIITA for the binding to P‐TEFb and blocks the expression of MHC class II genes in HIV‐1 infection. Immunity 12:61‐70.
   Kaplan, A.H. and Swanstrom, R. 1991. Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc. Natl. Acad. Sci. U.S.A. 88:4528‐4532.
   Kaul, M., Yu, H., Ron, Y., and Dougherty, J.P. 1998. Regulated lentiviral packaging cell line devoid of most viral cis‐acting. Virology 249:167‐174.
   Kotsopoulou, E., Kim, V.N., Kingsman, A.J., Kingsman, S.M., and Mitrophanous, K.A. 2000. A Rev‐independent human immunodeficiency virus type 1 (HIV‐1)‐based vector that exploits a codon‐optimized HIV‐1 gag‐pol gene. J. Virol. 74:4839‐4852.
   Keen, N.J., Gait, M.J., and Karn, J. 1996. Human immunodeficiency virus type‐1 Tat is an integral component of the activated transcription‐elongation complex. Proc. Natl. Acad. Sci. U.S.A. 93:2505‐2510.
   Khan, M.A., Aberham, C., Kao, S., Akari, H., Gorelick, R., Bour, S., Strebel, K. 2001. Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. J. Virol. 75:7252‐7265.
   Kim, V.N., Mitrophanous, K., Kingsman, S.M., and Kingsman, A.J. 1998. Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J. Virol. 72:811‐816.
   Kim, S.S., Kothari, N., You, X.J., Robinson, W.E. Jr., Schnell, T., Uberla, K., and Fan, H. 2001. Generation of replication‐defective helper‐free vectors based on simian immunodeficiency virus. Virology 282:154‐167.
   Kishi, M., Nishino, Y., Sumiya, M., Ohki, K., Kimura, T., Goto, T., Nakai, M., Kakinuma, M., and Ikuta, K. 1992. Cells surviving infection by human immunodeficiency virus type 1: vif or vpu mutants produce non‐infectious or markedly less cytopathic viruses. J. Gen.Virol. 73:77‐87.
   Klages, N., Zufferey, R., and Trono, D. 2000. A stable system for the high‐titer production of multiply attenuated lentiviral vectors. Mol. Ther. 2:170‐176.
   Klimkait, T., Strebel, K., Hoggan, M.D., Martin, M.A., and Orenstein, J.M. 1990. human immunodeficiency virus type 1‐specific protein vpu is required for efficient virus maturation and release. J.Virol. 64:621‐629.
   Kordower, J.H., Bloch, J., Ma, S.Y., Chu, Y., Palfi, S., Roitberg, B.Z., Emborg, M., Hantraye, P., Deglon, N., and Aebischer, P. 1999. Lentiviral gene transfer to the nonhuman primate brain. Exp. Neurol. 160:1‐16.
   Korin, Y.D. and Zack, J.A. 1998. Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription. J. Virol. 72:3161‐3168.
   Kumar, M., Keller, B., Makalou, N., and Sutton, R.E. 2001. Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther. 12:1893‐1905.
   LaFemina, R.L., Callahan, P.L., and Cordingley, M.G. 1991. Substrate specificity of recombinant human immunodeficiency virus integrase protein. J. Virol. 65:5624‐5630.
   Landau, N.R., Page, K.A., and Littman, D.R. 1991. Pseudotyping with human T‐cell leukemia virus type 1 broadens the human immunodeficiency virus host range. J. Virol. 65:162‐169.
   Lever, A., Gottlinger, H., Haseltine, W., and Sodroski, J. 1989. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J. Virol. 63:4085‐4087.
   Lewis, P., Hensel, M., and Emerman, M. 1992. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 11:3053‐3058.
   Lewis, P.F. and Emerman, M. 1994. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68:510‐516.
   Liu, H., Wu, X.N.M., Shaw, G.M., Hahn, B.H., and Kappes, J.C. 1995. The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. J. Virol. 69:7630‐7638.
   Loeb, J., Harris, M., and Hope, T. 2000. The woodchuck hepatitis virus posttranscriptional regulatory element increases transgene expression by enhancing the 3′‐end metabolism of mRNAs. Mol. Ther. 1:S142.
   Lois, C., Hong, E.J., Pease, S., Brown, E.J., Baltimore, D. 2002. line transmission and tissue‐specific expression of transgenes delivered by lentiviral vectors. Science 295:868‐872.
   Maddon, P.J., Dalgleish, A.G., McDougal, J.S., Clapham, P.R., Weiss, R.A., and Axel, R. 1986. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 47:333‐348.
   Mak, J., Jiang, M., Wainberg, M.A., Hammarskjold, M.L., Rekosh, D., and Kleiman, L. 1994. Role of Pr160gag‐pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. J. Virol. 68:2065‐2072.
   Malim, M.H., Hauber, J., Le, S.Y., Maizel, J.V., and Cullen, B.R. 1989. The HIV‐1 rev trans‐activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature. 338:254‐257.
   Mautino, M.R., Keiser, N., and Morgan, R.A. 2000. Improved titers of HIV‐1‐based lentiviral vectors using the SRV‐1 constitutive transport element. Gene Ther. 7:1421‐1424.
   May, C., Rivella, S., Callegari, J., Heller, G., Gaensler, K.M., Luzzatto, L., and Sadelain, M. 2000. Therapeutic haemoglobin synthesis in β‐thalassaemic mice expressing lentivirus‐encoded human beta‐globin. Nature. 406:82‐86.
   Mervis, R.J., Ahmad, N., Lillehoj, E.P., Raum, M.G., Salazar, F.H., Chan, H.W., and Venkatesan, S. 1988. The gag gene products of human immunodeficiency virus type 1: Alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors. J. Virol. 62:3993‐4002.
   Miller, D.G., Adam, M.A., and Miller, A.D. 1990. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. 10:4239‐4242.
   Miller, R.H. and Sarver, N. 1997. HIV‐1 accessory proteins as therapeutic targets. Nature Med. 3:389‐394.
   Mitrophanous, K., Yoon, S., Rohll, J., Patil, D., Wilkes, F., Kim, V., Kingsman, S., Kingsman, A., and Mazarakis, N. 1999. Stable gene transfer to the nervous system using a non‐primate lentiviral vector. Gene Ther. 11:1808‐1818.
   Miyoshi, H., Takahashi, M., Gage, F.H., and Verma, I.M. 1997. Stable and efficient gene transfer into the retina using an HIV‐1‐based lentiviral vector. Proc. Natl. Acad. Sci. U.S.A. 94:10319‐10323.
   Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H., and Verma, I.M. 1998. Development of a self‐inactivating lentivirus vector. J. Virol. 72:8150‐8157.
   Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., and Trono, D., 1996a. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263‐267.
   Naldini, L., Blomer, U., Gage, F.H., Trono, D., and Verma, I.M. 1996b. Efficient transfer, integration, and sustained long‐term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. U.S.A. 93:11382‐11388.
   No, D., Yao, T.‐P., and Evans, R.M. 1996. Ecdysone‐inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93:3346‐3351.
   Pacchia, A.L., Adelson, M.E., Kaul, M., Ron, Y., and Dougherty, J.P. 2001. An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of HIV‐1 accessory proteins. Virology 282:77‐86.
   Page, K.A., Landau, N.R., and Littman, D.R. 1990. Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64:5270‐5276.
   Panganiban, A.T. and Fiore, D. 1988. Ordered interstrand interstrand and intrastrand DNA transfer during reverse transcription. Science 241:1064‐1069.
   Pawliuk, R., Westerman, K.A., Fabry, M.E., Payen, E., Tighe, R., Bouhassira, E.E., Acharya, S.A., Ellis, J., London, I.M., Eaves, C.J., Humphries, R.K., Beuzard, Y., Nagel, R.L., and Leboulch, P. 2001. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294:2368‐2371.
   Peng, C., Ho, B.K., Chang, T.W., and Chang, N.T. 1989. Role of human immunodeficiency virus type 1‐specific protease in core protein maturation and viral infectivity. J. Virol. 63:2550‐2556.
   Pfeifer, A., Ikawa, M., Dayn, Y., and Verma, I.M. 2002. Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl. Acad. Sci. U.S.A. 99:2140‐2145.
   Planelles, V., Bachelerie, F., Jowett, J.B., Haislip, A., Xie, Y., Banooni, P., Masuda, T., and Chen, I.S. 1995. Fate of the human immunodeficiency virus type 1 provirus in infected cells: A role for vpr. J. Virol. 69:5883‐5889.
   Poeschela, E., Gilbert, J., Li, X., Huang, S., Ho, A., and Wong‐Staal, F. 1998. Identification of a human immunodeficiency virus type 2 (HIV‐1‐2) encapsidation determinant and transduction of nondividing human cells by HIV‐1‐2‐based lentivirus vectors. J. Virol. 72:6527‐6536.
   Poznansky, M., Lever, A., Begeron, L., Haseltine, W., and Sodroski, J. 1991. Gene transfer into human lymphocytes by a defective human immunodeficiency virus type I vector. J. Virol. 65:532‐536.
   Ramezani, A., Hawley, T.S., and Hawley, R.G. 2000. Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol. Ther. 2:458‐469.
   Rice, W.G., Supko, J.G., Malspeis, L., Buckheit, R.W. Jr., Clanton, D., Bu, M., Graham, L., Schaeffer, C.A., Turpin, J.A., and Domagala, J. 1995. Inhibitors of HIV‐1 nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science 270:1194‐1197.
   Robert‐Guroff, M., Popovic, M., Gartner, S., Markham, P., Gallo, R.C., and Reitz, M.S. 1990. Structure and expression of tat‐, rev‐, and nef‐specific transcripts of human immunodeficiency virus type 1 in infected lymphocytes and macrophages. J. Virol. 64:3391‐3398.
   Robey, W.G., Safai, B., Oroszlan, S., Arthur, L.O., Gonda, M.A., Gallo, R.C., and Fischinger, P.J. 1985. Characterization of envelope and core structural gene products of HTLV‐III with sera from AIDS patients. Science 228:593‐595.
   Schlegel, R., Tralka, T.S., Willingham, M.C., and Pastan, I. 1983. Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV‐binding site?. Cell. 32:639‐646.
   Schwartz, S., Felber, B.K., and Pavlakis, G.N. 1992. Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol. Cell Biol. 12:207‐219.
   Selby, M.J., Bain, E.S., Luciw, P.A., and Peterlin, B.M. 1989. Structure, sequence, and position of the stem‐loop in tar determine transcriptional elongation by tat through the HIV‐1 long terminal repeat. Genes Dev. 3:547‐558.
   Sheng, N. and Erickson‐Viitanen, S. 1994. Cleavage of p15 protein in vitro by human immunodeficiency virus type 1 protease is RNA dependent. J. Virol. 68:6207‐6214.
   Skripkin, E., Paillart, J.C., Marquet, R., Ehresmann, B., and Ehresmann, C. 1994. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc. Natl. Acad. Sci. U.S.A. 91:4945‐4949.
   Srinivasakumar, N., Chazal, N., Helga‐Maria, C., Prasad, S., Hammarskjold, M.L., and Rekosh, D. 1997. effect of viral regulatory protein expression on gene delivery by human immunodeficiency virus type 1 vectors produced in stable packaging cell lines. J. Virol. 71:5841‐5848.
   Stein, B.S. and Engleman, E.G. 1990. Intracellular processing of the gp160 HIV‐1 envelope precursor: Endoproteolytic cleavage occurs in a cis or medial compartment of the Golgi complex. J. Biol. Chem. 265:2640‐2649.
   Stein, B.S., Gowda, S.D., Lifson, J.D., Penhallow, R.C., Bensch, K.G., and Engleman, E.G. 1987. pH‐independent HIV‐1 entry into CD4‐positive T cells via virus envelope fusion to the plasma membrane. Cell. 49:659‐668.
   Sun, Y., Pinchuk, L.M., Agy, M.B., and Clark, E.A. 1997. Nuclear import of HIV‐1 DNA in resting CD4+ T cells requires a cyclosporin A‐sensitive pathway. J. Immunol. 158:512‐517.
   Swann, S.A., Williams, M., Story, C.M., Bobbitt, K.R., Fleis, R., and Collins, K.L. 2001. HIV‐1 Nef blocks transport of MHC class I molecules to the cell surface via a PI 3‐kinase‐dependent pathway. Virology 282:267‐277.
   Trono, D. 1995. HIV‐1 accessory proteins: Leading roles for the supporting cast. Cell. 82:189‐192.
   Uchida, N., Sutton, R.E., Friera, A.M., He, D., Reitsma, M.J., Chang, W.C., Veres, G., Scollay, R., and Weissman, I.L. 1998. HIV‐1, but not murine leukemia virus, vectors mediated high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl. Acad. Sci. U.S.A. 95:11939‐11944.
   Ullman, K.S., Powers, M.A., and Forbes, D.J. 1997. Nuclear export receptors: From importin to exportin. Cell. 90:967‐970.
   Valsamakis, A., Zeichner, S., Carswell, S., and Alwine, J.C. 1991. The human immunodeficiency virus type 1 polyadenylylation signal: A 3′ long terminal repeat element upstream of the AAUAAA necessary for efficient polyadenylylation. Proc. Natl. Acad. Sci. U.S.A. 88:2108‐2112.
   Vigna, E. and Naldini, L. 2000. Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. J. Gene Med. 2:308‐316.
   Wen, W., Meinkoth, J.L., Tsien, R.Y., and Taylor, S.S. 1995. Identification of a signal for rapid export of proteins from the nucleus. Cell. 82:463‐473.
   Wolfgang, M.J., Eisele, S.G., Browne, M.A., Schotzko, M.L., Garthwaite, M.A., Durning, M., Ramezani, A., Hawley, R.G., Thomson, J.A., and Golos, T.G. 2001. Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos. Proc. Natl. Acad. Sci.U.S.A. 98:10728‐10732.
   Willey, R.L., Bonifacino, J.S., Potts, B.J., Martin, M.A., and Klausener, R.D. 1988. Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc. Natl. Acad. Sci. U.S.A. 85:9580‐9584.
   Yang, Y., Vanin, E.F., Whitt, M.A., Fornerod, M., Zwart, R., Schneiderman, R.D., Grosveld, G., and Nienhuis, A.W. 1995. Inducible, high‐level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelope protein. Hum. Gene Ther. 6:1203‐1213.
   Yu, H., Rabson, A.B., Kaul, M., Ron, Y., and Dougherty, J.P. 1996. Inducible human immunodeficiency virus type 1 packaging cell lines. J. Virol. 70:4530‐4537.
   Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., and Charneau, P. 2000. HIV‐1 genome nuclear import is mediated by a central DNA flap. Cell. 101:173‐185.
   Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. 1997. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechol. 15:871‐875.
   Zufferey, R., Dull, T., Mandel, R.J., Bukovsky, A., Quiroz, D., Naldini, L., and Trono, D. 1998. Self‐inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72:9873‐9880.
   Zufferey, R., Donello, J.E., Trono, D., and Hope, T.J. 1999. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73:2886‐2892.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library